Conventional and emergent technologies for honey processing: A perspective on microbiological safety, bioactivity, and quality
Hana Scepankova
LAQV-REQUIMTE, Chemistry Department, University of Aveiro, Aveiro, Portugal
Contribution: Conceptualization (equal), Visualization (equal), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorCarlos A. Pinto
LAQV-REQUIMTE, Chemistry Department, University of Aveiro, Aveiro, Portugal
Contribution: Visualization (equal), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorVanessa Paula
Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Bragança, Portugal
Contribution: Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Letícia M. Estevinho
Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Bragança, Portugal
Correspondence
Letícia M. Estevinho, Centro de Investigação de Montanha, Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal.
Email: [email protected]
Jorge A. Saraiva, LAQV-REQUIMTE, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
Email: [email protected]
Contribution: Supervision (equal), Validation (equal), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Jorge A. Saraiva
LAQV-REQUIMTE, Chemistry Department, University of Aveiro, Aveiro, Portugal
Correspondence
Letícia M. Estevinho, Centro de Investigação de Montanha, Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal.
Email: [email protected]
Jorge A. Saraiva, LAQV-REQUIMTE, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
Email: [email protected]
Contribution: Project administration (equal), Resources (equal), Supervision (equal), Validation (equal), Visualization (equal), Writing - review & editing (equal)
Search for more papers by this authorHana Scepankova
LAQV-REQUIMTE, Chemistry Department, University of Aveiro, Aveiro, Portugal
Contribution: Conceptualization (equal), Visualization (equal), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorCarlos A. Pinto
LAQV-REQUIMTE, Chemistry Department, University of Aveiro, Aveiro, Portugal
Contribution: Visualization (equal), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorVanessa Paula
Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Bragança, Portugal
Contribution: Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Letícia M. Estevinho
Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Bragança, Portugal
Correspondence
Letícia M. Estevinho, Centro de Investigação de Montanha, Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal.
Email: [email protected]
Jorge A. Saraiva, LAQV-REQUIMTE, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
Email: [email protected]
Contribution: Supervision (equal), Validation (equal), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Jorge A. Saraiva
LAQV-REQUIMTE, Chemistry Department, University of Aveiro, Aveiro, Portugal
Correspondence
Letícia M. Estevinho, Centro de Investigação de Montanha, Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal.
Email: [email protected]
Jorge A. Saraiva, LAQV-REQUIMTE, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
Email: [email protected]
Contribution: Project administration (equal), Resources (equal), Supervision (equal), Validation (equal), Visualization (equal), Writing - review & editing (equal)
Search for more papers by this authorAbstract
Honey is a natural food of worldwide economic importance. Over the last decades, its potential for food, medical, cosmetical, and biotechnological applications has been widely explored. One of the major safety issues regarding such applications is its susceptibility to being contaminated with bacterial and fungi spores, including pathogenic ones, which may impose a hurdle to its consumption in a raw state. Another factor that makes this product particularly challenging relies on its high sugar content, which will lead to the formation of hydroxymethylfurfural (HMF) when heated (due to Maillard reactions). Moreover, honey's bioactivity is known to be affected when it goes through thermal processing due to its unstable and thermolabile components. Therefore, proper food processing methodologies are of utmost importance not only to ensure honey safety but also to provide a high-quality product with low content of HMF and preserved biological properties. As so, emerging food processing technologies have been employed to improve the safety and quality of raw honey, allowing, for example, to reduce/avoid the exposure time to high processing temperatures, with consequent impact on the formation of HMF. This review aims to gather the literature available regarding the use of conventional and emergent food processing technologies (both thermal and nonthermal food processing technologies) for honey decontamination, preservation/enhancement of honey biological activity, as well as the sensorial attributes.
CONFLICTS OF INTEREST
The authors declare no conflicts of interest.
REFERENCES
- Abedi, F., Ghasemi, S., Farkhondeh, T., Azimi-Nezhad, M., Shakibaei, M., & Samarghandian, S. (2021). Possible potential effects of honey and Its main components against Covid-19 infection. Dose-Response, 19(1), 1–13. https://doi.org/10.1177/1559325820982423
- Akhmazilah, N., Farid, M., & Silva, F. V. M. (2014). High-pressure processing of manuka honey: Improvement of antioxidant activity, preservation of colour and flow behaviour. Food and Bioprocess Technology, 7, 2299–2307. https://doi.org/10.1007/s11947-013-1204-7
- Akhmazillah, F. N., & Farid, M. M. (2015). High-pressure processing of Manuka honey: Brown pigment formation, improvement of antibacterial activity and hydroxymethylfurfural content. International Journal of Food Science & Technology, 50, 178–185. https://doi.org/10.1111/ijfs.12630
- Akhmazillah, F. N., & Farid, M. M. (2017). High pressure processed manuka honey: Change in nutritional and rheological properties over 1-year storage. Journal of Food Processing and Preservation, 41(4), e13085. https://doi.org/10.1111/jfpp.13085
- Akhmazillah, F. N., Farid, M. M., & Silva, F. (2017). An insight on the relationship between food compressibility and microbial inactivation during high pressure processing. Journal of Food Science and Technology, 54(3), 802–809. https://doi.org/10.1007/s13197-017-2526-7
- Akhmazillah, M. F. N., Farid, M. M., & Silva, F. V. M. (2012). High pressure processing of honey: Preliminary study of total microorganism inactivation and identification of bacteria. Journal of Science and Technology, 4, 1–12.
- Akhmazillah, M. F. N., Farid, M. M., & Silva, F. V. M. (2013). High pressure processing (HPP) of honey for the improvement of nutritional value. Innovative Food Science & Emerging Technologies, 20, 59–63. https://doi.org/10.1016/j.ifset.2013.06.012
- Al-Habsi, N. A., & Niranjan, K. (2012). Effect of high hydrostatic pressure on antimicrobial activity and quality of Manuka honey. Food Chemistry, 135(3), 1448–1454. https://doi.org/10.1016/j.foodchem.2012.06.012
- Almasaudi, S. (2021). The antibacterial activities of honey. Saudi Journal of Biological Sciences, 28(4), 2188–2196. https://doi.org/10.1016/j.sjbs.2020.10.017
- Aydogan-coskun, B., Coklar, H., & Akbulut, M. (2019). Effect of heat treatment for liquefaction and pasteurization on antioxidant activity and phenolic compounds of Astragalus and sunflower-cornflower honeys. Food Science and Technology, 40(3), 629–634. https://doi.org/10.1590/fst.15519Effect
- Baglio, E. (2018). Overheating indexes and honey quality. In Chemistry and technology of honey production (pp. 23–40). Springer. https://doi.org/10.1007/978-3-319-65751-6_3
10.1007/978-3-319-65751-6_3 Google Scholar
- Bartáková, K., Dračková, M., Borkovcová, I., & Lenka, V. (2011). Impact of microwave heating on hydroxymethylfurfural content in Czech honeys. Czech Journal Food Science, 29(4), 328–336.
- Bath, P. K., & Singh, N. (2001). Effect of microwave heating on hydroxymethylfurfural formation and browning in Helianthus annuus and Eucalyptus lanceolatus honey. Journal of Food Science and Technology, 38(4), 366–368.
- Belitz, H. D., Grosch, W., & Schieberle, P. (2009). Food chemistry ( 4th revise). Springer-Verlag.
- Bera, A., Almeida-Muradian, L. B., & Sabato, S. F. (2008). Study of some physicochemical and rheological properties of irradiated honey. Nukleonika, 53(2), S85–S87.
- Biluca, F. C., Betta, F. D., de Oliveira, G. P., Pereira, L. M., Gonzaga, L. V., Oliveira Costa, A. C., & Fett, R. (2014). 5-HMF and carbohydrates content in stingless bee honey by CE before and after thermal treatment. Food Chemistry, 159, 244–249. http://doi.org/10.1016/j.foodchem.2014.03.016
- Bogdanov, S. (2009). Harmonised methods of the International Honey Commission. Swiss Bee Research Centre.
- Brudzynski, K. (2012). Honey melanoidins: Emerging novel understanding on the mechanism of antioxidant and antibacterial action of honey. In J. Majtan (Ed.), Honey: Current research and clinical applications (pp. 17–38). Nova Science Publishers.
- Brudzynski, K., & Miotto, D. (2011). The recognition of high molecular weight melanoidins as the main components responsible for radical-scavenging capacity of unheated and heat-treated Canadian honeys. Food Chemistry, 125(2), 570–575. https://doi.org/10.1016/j.foodchem.2010.09.049
- Bucekova, M., Bugarova, V., Godocikova, J., & Majtan, J. (2020). Demanding new honey qualitative standard based on antibacterial activity. Foods, 9(9), 1263. https://doi.org/10.3390/foods9091263
- Bucekova, M., Juricova, V., Di Marco, G., Gismondi, A., Leonardi, D., Canini, A., & Majtan, J. (2018). Effect of thermal liquefying of crystallised honeys on their antibacterial activities. Food Chemistry, 269, 335–341. https://doi.org/10.1016/j.foodchem.2018.07.012
- Bucekova, M., Juricova, V., Monton, E., Martinotti, S., Ranzato, E., & Majtan, J. (2018). Microwave processing of honey negatively affects honey antibacterial activity by inactivation of bee-derived glucose oxidase and defensin-1. Food Chemistry, 240, 1131–1136. https://doi.org/10.1016/j.foodchem.2017.08.054
- Chaikham, P., Kemsawasd, V., & Apichartsrangkoon, A. (2016). Effects of conventional and ultrasound treatments on physicochemical properties and antioxidant capacity of floral honeys from Northern Thailand. Food Bioscience, 15, 19–26. https://doi.org/10.1016/j.fbio.2016.04.002
- Chaikham, P., & Prangthip, P. (2015). Alteration of antioxidative properties of longan flower-honey after high pressure, ultra-sonic and thermal processing. Food Bioscience, 10, 1–7. https://doi.org/10.1016/j.fbio.2015.01.002
- Chandrasekaran, S., Ramanathan, S., & Basak, T. (2013). Microwave food processing-A review. Food Research International, 52(1), 243–261. https://doi.org/10.1016/j.foodres.2013.02.033
- Chen, C., Campbell, L. T., Blair, S. E., Carter, D. A., Da, P. I., & Jr, S. (2012). The effect of standard heat and filtration processing procedures on antimicrobial activity and hydrogen peroxide levels in honey. Frontiers in Microbiology, 3(265), 1–8. https://doi.org/10.3389/fmicb.2012.00265
- Chong, K., Chin, N., & Yusof, Y. (2017). Thermosonication and optimization of stingless bee honey processing. Food Science and Technology International, 23(7), 608–622. https://doi.org/10.1177/1082013217713331
- Chua, L. S., Adnan, N. A., Abdul-Rahaman, N.-L., & Sarmidi, M. R. (2014). Effect of thermal treatment on the biochemical composition of tropical honey samples. International Food Research Journal, 21(2), 773–778.
- Codex Alimentarius. (2001). Revised codex standard for honey, standards and standard methods. Food and Agriculture Organization of the United Nations. http://www.codexalimentarius.net
- Combarros-Fuertes, P., Estevinho, L. M., Dias, L. G., Castro, J. M., Tomás-Barberán, F. A., Tornadijo, M. E., & Fresno-Baro, J. M. (2019). Bioactive components and antioxidant and antibacterial activities of different varieties of honey: A screening prior to clinical application. Journal of Agricultural and Food Chemistry, 67(2), 688–698. https://doi.org/10.1021/acs.jafc.8b05436
- Combarros-Fuertes, P., Fresno, J. M., Estevinho, M. M., Sousa-Pimenta, M., Tornadijo, M. E., & Estevinho, L. M. (2020). Honey: Another alternative in the fight against antibiotic-resistant bacteria? Antibiotics, 9(11), 1–21. https://doi.org/10.3390/antibiotics9110774
- Cozmuta, A. M., Cozmuta, L. M., Varga, C., Marian, M., & Peter, A. (2011). Effect of thermal processing on quality of polyfloral honey. Romanian Journal or Food Science, 1(1), 45–52.
- Czipa, N., Phillips, C. J. C., & Kovács, B. (2019). Composition of acacia honeys following processing, storage and adulteration. Journal of Food Science and Technology, 56(3), 1245–1255. https://doi.org/10.1007/s13197-019-03587-y
- Dezmirean, D., Marghitas, L. A., Fit, N., Chirila, F., Gherman, B., Margaoan, R., Aurori, A., & Bobis, O. (2015). Antibacterial effect of heather honey (Calluna vulgaris) against different microorganisms of clinical importance. Bulletin UASVM Animal Science and Biotechnologies, 72(1), 72–77. https://doi.org/10.15835/buasvmcn-asb
- Dimiņš, F., Miķelsone, V., Augšpole, I., & Niklāvs, A. (2019). Microwave facilities for thermal treatment of honey. Key Engineering Materials, 800, 103–107. https://doi.org/10.4028/www.scientific.net/KEM.800.103
10.4028/www.scientific.net/KEM.800.103 Google Scholar
- Doménech, E., Escriche, I., & Martorell, S. (2010). Quantification of risk to company's incomes due to failures in food quality. Reliability Engineering and System Safety, 95(12), 1324–1334. https://doi.org/10.1016/j.ress.2010.06.009
- Elamine, Y., Anjos, O., Estevinho, M. L., Lyoussi, B., Aazza, S., & Miguel, M. G. (2020). Effect of extreme heat processing on the Moroccan Zantaz’ honey antioxidant activities. Journal of Food Science and Technology, 57(9), 3323–3333. https://doi.org/10.1007/s13197-020-04365-x
- Erejuwa, O. O., Sulaiman, S. A., & Wahab, M. S. A. (2014). Effect of honey and its mechanisms of action on the development and progression of cancer. Molecules, 19, 2497–2522. https://doi.org/10.3390/molecules19022497
- Escriche, I., Visquert, M., Juan-Borrás, M., & Fito, P. (2009). Influence of simulated industrial thermal treatments on the volatile fractions of different varieties of honey. Food Chemistry, 112(2), 329–338. https://doi.org/10.1016/j.foodchem.2008.05.068
- Escriche, I., Kadar, M., Juan-Borrás, M., & Domenech, E. (2014). Suitability of antioxidant capacity, flavonoids and phenolic acids for floral authentication of honey. Impact of industrial thermal treatment. Food Chemistry, 142, 135–143. https://doi.org/10.1016/j.foodchem.2013.07.033
- Eteraf-oskouei, T., & Najafi, M. (2013). Traditional and modern uses of natural honey in human diseases: A review. Iranian Journal of Basic Medical Sciences, 16, 731–742. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758027/
- European Commission. (2002). Opinion of the scientific committee on veterinary measures relating to public health on honey and microbiological hazards. http://ec.europa.eu/food/fs/sc/scv/out53_en.pdf
- Fallico, B., Zappalà, M., Arena, E., & Verzera, A. (2004). Effects of conditioning on HMF content in unifloral honeys. Food Chemistry, 85(2), 305–313. https://doi.org/10.1016/j.foodchem.2003.07.010
- Feliciano, C. P. (2018). High-dose irradiated food: Current progress, applications, and prospects. Radiation Physics and Chemistry, 144, 34–36. https://doi.org/10.1016/j.radphyschem.2017.11.010
- Fernandes, L., Ribeiro, H., Oliveira, A., Sanches Silva, A., Freitas, A., Henriques, M., & Rodrigues, M. E. (2021). Portuguese honeys as antimicrobial agents against Candida species. Journal of Traditional and Complementary Medicine, 11(2), 130–136. https://doi.org/10.1016/j.jtcme.2020.02.007
- Finola, M. S., Lasagno, M. C., & Marioli, J. M. (2007). Microbiological and chemical characterization of honeys from central Argentina. Food Chemistry, 100(4), 1649–1653. https://doi.org/10.1016/j.foodchem.2005.12.046
- Fit, N., Chirila, F., Nadas, G., Negrea, O., Bobis, O., & Marghitas, L. (2014). Assessment of the antimicrobial effect of honey, treated by heat and ultraviolet radiation. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Veterinary Medicine, 71(2), 449–454. https://doi.org/10.15835/buasvmcn-vm:10738
10.15835/buasvmcn-vm:10738 Google Scholar
- García, N. L. (2018). The current situation on the international honey market. Bee World, 95(3), 89–94. https://doi.org/10.1080/0005772X.2018.1483814
10.1080/0005772X.2018.1483814 Google Scholar
- Ghazali, H. M., Ming, T. C., & Hashim, D. M. (1994). Effect of microwave heating on the storage and properties of starfruit honey. Asean Food Journal, 9(1), 1994.
- Girma, A., Seo, W., & She, R. C. (2019). Antibacterial activity of varying UMF-graded Manuka honeys. PLoS ONE, 14(10), 1–9. https://doi.org/10.1371/journal.pone.0224495
- Gonnet, M., Lavie, P., & Louveaux, J. (1964). La pasteurisation des miels. Annales Abeilles, 7, 81–102.
- Grainger, M. N. C., Manley-Harris, M., Fauzi, N. A. M., & Farid, M. M. (2014). Effect of high pressure processing on the conversion of dihydroxyacetone to methylglyoxal in New Zealand mānuka (Leptospermum scoparium) honey and models thereof. Food Chemistry, 153, 134–139. https://doi.org/10.1016/j.foodchem.2013.12.017
- Hebbar, H. U., Nandini, K. E., Lakshmi, M. C., & Subramanian, R. (2003). Microwave and infrared heat processing of honey and its quality. Food Science and Technology Research, 9(1), 49–53. https://doi.org/10.3136/fstr.9.49
- Hillegas, S. L., & Demirci, A. (2003). Inactivation of clostridium sporogenes in clover honey by pulsed UV-light treatment. Agricultural Engineering International. https://doi.org/10.13031/2013.14232
- Horniackova, M., Bucekova, M., Valachova, I., & Majtan, J. (2017). Effect of gamma radiation on the antibacterial and antibiofilm activity of honeydew honey. European Food Research and Technology, 243(1), 81–88. https://doi.org/10.1007/s00217-016-2725-x
- Hossain, K. S., Hossain, M. G., Moni, A., Rahman, M. M., Rahman, U. H., Alam, M., Kundu, S., Rahman, M. M., Hannan, M. A., & Uddin, M. J. (2020). Prospects of honey in fighting against COVID-19: Pharmacological insights and therapeutic promises. Heliyon, 6(12), e05798. https://doi.org/10.1016/j.heliyon.2020.e05798
- Huhtanen, C. N. (1991). Gamma radiation resistance of Clostridium botulinum 62A and Bacillus subtilis spores in honey. Journal of Food Protection, 54(11), 894–896. https://doi.org/10.4315/0362-028X-54.11.894
- Husøy, T., Haugen, M., Murkovic, M., Jöbstl, D., Stølen, L. H., Bjellaas, T., Rønningborg, C., & Alexander, J. (2008). Dietary exposure to 5-hydroxymethylfurfural from Norwegian food and correlations with urine metabolites of short-term exposure. Food and Chemical Toxicology, 46(12), 3697–3702. https://doi.org/10.1016/j.fct.2008.09.048
- Hussein, S. Z., Yusoff, K. M., Makpol, S., & Yusof, Y. A. M. (2014). Does gamma irradiation affect physicochemical properties of honey? Clinical Therapeutics, 165(2), 125–133.
- International Honey Commission. (2002). Harmonised methods of the international honey commission. Author.
- Isaacs, N. S., & Coulson, M. (1996). The effect of pressure on processes modelling the Maillard reaction. In R. Hayashi & C. Balny (Eds.), Progress in biotechnology (Vol. 13, pp. 479–484). Elsevier.
- Iurlina, M. O., & Fritz, R. (2005). Characterization of microorganisms in Argentinean honeys from different sources. International Journal of Food Microbiology, 105(3), 297–304. https://doi.org/10.1016/j.ijfoodmicro.2005.03.017
- Jahan, N., Islam, M. A., Alam, F., Gan, S. H., & Khalil, M. I. (2015). Prolonged heating of honey increases its antioxidant potential but decreases its antimicrobial activity. African Journal of Traditional, Complementary and Alternative Medicines, 12(4), 134–144. https://doi.org/10.4314/ajtcam.v12i4.20
- Jalali, S. F. S., Ehsani, A., Tajik, H., & Ashtari, S. (2007). In vitro assessment of efficacy of gamma irradiation on the antimicrobial activity of Iranian honey. Journal of Animal and Veterinary Advances, 6(8), 996–999.
- Jan, A., Sood, M., Sofi, S. A., & Norzom, T. (2017). Non-thermal processing in food applications: A review. International Journal of Food Science and Nutrition, 2(6), 171–180.
- Janghu, S., Bera, M. B., Nanda, V., & Rawson, A. (2017). Studies on power ultrasound process optimization and its comparative analysis with conventional thermal processing for treatment of raw honey. Food Technology and Biotechnology, 55(4), 570–579. https://doi.org/10.17113/ftb.55.04.17.5263
- Kabbani, D., Sepulcre, F., Gastón, E., & Wedekind, J. (2011). High-power ultrasound-assisted pasteurisation of honey. 11th International Congress on Engineering and Food.
- Kabbani, D., Sepulcre, F., & Wedekind, J. (2011). Ultrasound-assisted liquefaction of rosemary honey: Influence on rheology and crystal content. Journal of Food Engineering, 107(2), 173–178. https://doi.org/10.1016/j.jfoodeng.2011.06.027
- Kamboj, R., Sandhu, S. R., Kaler, R. S., Bera, B. M., & Nanda, V. (2019). Optimization of process parameters on hydroxymethylfurfural content, diastase and invertase activity of coriander honey. Journal of Food Science and Technology, 56(7), 3205–3214. https://doi.org/10.1007/s13197-019-03774-x
- Karabagias, V. K., Karabagias, I. K., & Gatzias, I. (2018). The impact of different heating temperatures on physicochemical, color attributes, and antioxidant activity parameters of Greek honeys. Journal of Food Process Engineering, 41, 1–9. https://doi.org/10.1111/jfpe.12668
- Karabournioti, S., & Zervalaki, P. (2001). The effect of heating on honey HMF and invertase. Apiacta, 4, 1–3.
- Kato, Y., Kishi, Y., Okano, Y., Kawai, M., Shimizu, M., Suga, N., Yakemoto, C., Kato, M., Nagata, A., & Miyoshi, N. (2021). Methylglyoxal binds to amines in honey matrix and 2′-methoxyacetophenone is released in gaseous form into the headspace on the heating of manuka honey. Food Chemistry, 337, 127789. https://doi.org/10.1016/j.foodchem.2020.127789
- Kedzierska-Matysek, M., Florek, M., Wolanciuk, A., Skalecki, P., & Litwinczuk, A. (2016). Characterisation of viscosity, colour, 5-hydroxymethylfurfural content and diastase activity in raw rape honey (Brassica napus) at different temperatures. Journal of Food Science and Technology, 53(4), 2092–2098. https://doi.org/10.1007/s13197-016-2194-z
- Kędzierska-Matysek, M., Stryjecka, M., Teter, A., Skałecki, P., Domaradzki, P., & Florek, M. (2021). Relationships between the content of phenolic compounds and the antioxidant activity of polish honey varieties as a tool for botanical discrimination. Molecules, 26(6), 1810. https://doi.org/10.3390/molecules26061810
- Khalil, M. I., Islam, M. A., Alam, N., Gan, S. H., & Sulaiman, S. A. (2015). Irradiation and evaporation enhance physicochemical characteristics, AEAC, FRAP, protein and proline contents of tualang honey. Journal of Food Biochemistry, 39(6), 742–753. https://doi.org/10.1111/jfbc.12182
- Kowalski, S. (2013). Changes of antioxidant activity and formation of 5-hydroxymethylfurfural in honey during thermal and microwave processing. Food Chemistry, 141, 1378–1382. https://doi.org/10.1016/j.foodchem.2013.04.025
- Kowalski, S., & Lukasiewicz, M. (2017). Diastase and invertase activity changes and 5-hydroxymethyl-2-furfural formation in honeys under influence of microwave irradiation: HMF, enzymes activity under influence of microwave. Journal of Food Process Engineering, 40(2), e12410. https://doi.org/10.1111/jfpe.12410
- Kowalski, S., Lukasiewicz, M., Bednarz, S., & Panus, M. (2012). Diastase number changes during thermal and microwave processing of honey. Czech Journal Food Science, 30(1), 21–26. https://doi.org/10.17221/123/2010-CJFS
- Kretavičius, J., Kurtinaitienė, B., Račys, J., & Ceksteryte, V. (2010). Inactivation of glucose oxidase during heat-treatment de-crystallization of honey. Zemdirbyste Agriculture, 97(4), 115–122.
- Lee, C.-H., Chen, K.-T., Lin, J.-A., Chen, Y.-T., Chen, Y.-A., Wu, J.-T., & Hsieh, C.-W. (2019). Recent advances in processing technology to reduce 5-hydroxymethylfurfural in foods. Trends in Food Science & Technology, 93, 271–280. https://doi.org/10.1016/j.tifs.2019.09.021
- Leon-Ruiz, V., Vera, S., Gonzalez-Porto, A., & Paz San Andres, M. (2011). Vitamin C and sugar levels as simple markers for discriminating Spanish honey sources. Journal of Food Science, 76(3), 356–361. https://doi.org/10.1111/j.1750-3841.2011.02041.x
- Leyva-Daniel, D. E., Escobedo-Avellaneda, Z., Villalobos-Castillejos, F., Alamilla-Beltrán, L., & Welti-Chanes, J. (2017). Effect of high hydrostatic pressure applied to a Mexican honey to increase its microbiological and functional quality. Food and Bioproducts Processing, 102, 299–306. https://doi.org/10.1016/j.fbp.2017.01.001
- Lucey, J. (2015). Raw milk consumption risks and benefits. Nutrition Today, 50(4), 189–193. https://doi.org/10.1097/NT.0000000000000108
- Ma, Y., Zhang, B., Li, H., Li, Y., Hu, J., Li, J., Wang, H., & Deng, Z. (2017). Chemical and molecular dynamics analysis of crystallization properties of honey. International Journal of Food Properties, 20(4), 725–733. https://doi.org/10.1080/10942912.2016.1178282
- Mahnot, N. K., Saikia, S., & Mahanta, C. L. (2019). Quality characterization and effect of sonication time on bioactive properties of honey from North East India. Journal of Food Science and Technology, 56(2), 724–736. https://doi.org/10.1007/s13197-018-3531-1
- Majkut, M., Kwiecińska-Piróg, J., Wszelaczyńska, E., Pobereżny, J., Gospodarek-Komkowska, E., Wojtacki, K., & Barczak, T. (2021). Antimicrobial activity of heat-treated Polish honeys. Food Chemistry, 343, 128561. https://doi.org/10.1016/j.foodchem.2020.128561
- Manyi-loh, C. E., Clarke, A. M., Munzhelele, T., Green, E., Mkwetshana, N. F., & Ndip, R. N. (2010). Selected South African honeys and their extracts possess in vitro anti-helicobacter pylori activity. Archives of Medical Research, 41(5), 324–331. https://doi.org/10.1016/j.arcmed.2010.08.002
- Marghtas, L. A., Bonta, V., & Dezmirean, D. S. (2011). Influence of UV radiation upon pesticide residues from contaminated honey. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Animal Science and Biotechnologies, 68(1–2). https://doi.org/10.15835/buasvmcn-asb:68:1-2:6656
- Matsuda, A., & Sabato, S. (2004). Effect of irradiation on Brazilian honeys’ consistency and their acceptability. Radiation Physics and Chemistry, 71(1–2), 109–112. https://doi.org/10.1016/j.radphyschem.2004.03.068
- McLoone, P., Tabys, D., & Fyfe, L. (2020). Honey combination therapies for skin and wound infections: A systematic review of the literature. Clinical, Cosmetic and Investigational Dermatology, 13, 875–888. https://doi.org/10.2147/CCID.S282143
- McLoone, P., Warnock, M., & Fyfe, L. (2016). Honey: A realistic antimicrobial for disorders of the skin. Journal of Microbiology, Immunology and Infection, 49, 161–167. https://doi.org/10.1016/j.jmii.2015.01.009
- Migdal, W., Owczarczyk, H., Kedzia, B., Kedzia-Holderna, E., & Madajczyk, D. (2000). Microbiological decontamination of natural honey by irradiation. Radiation Physics and Chemistry, 57, 285–288.
- Molan, P. C., & Allen, K. L. (1996). The effect of gamma-irradiation on the antibacterial activity of honey. Journal of Pharmacy and Pharmacology, 48(11), 1206–1209. https://doi.org/10.1111/j.2042-7158.1996.tb03922.x
- Moline, M., Fernandez, N., Medici, S., Fasce, D., & Gende, L. (2015). Effect of microwave treatment on microbial contamination of honeys and in their physicochemical and thermal properties. Polish Journal of Food and Nutrition Sciences, 65(2), 119–126. https://doi.org/10.1515/pjfns-2015-0031
- Nanda, V., Bera, M. B., & Bakhshi, A. K. (2006). Optimization of the process parameters to establish the quality attributes of hydroxymethylfurfural content and diastatic activity of sunflower (Helianthus annus) honey using response surface methodology. European Food Research and Technology, 222(1–2), 64–70. https://doi.org/10.1007/s00217-005-0133-8
- Nayik, G. A., & Nanda, V. (2015). Effect of thermal treatment and pH on antioxidant activity of saffron honey using response surface methodology. Journal of Food Measurement and Characterization, 10, 64–70. https://doi.org/10.1007/s11694-015-9277-9
- Nayik, G., & Nanda, V. (2016). Application of response surface methodology to study the combined effect of temperature, time and pH on antioxidant activity of cherry (Prunus avium) honey. Polish Journal of Food and Nutrition Sciences, 66(4), 287–293. https://doi.org/10.1515/pjfns-2015-0055
- Nolan, V. C., Harrison, J., & Cox, J. A. G. (2019). Dissecting the antimicrobial composition of honey. Antibiotics, 8(1), 251.
- Olas, B. (2020). Honey and its phenolic compounds as an effective natural medicine for cardiovascular diseases in humans? Nutrients, 12(2), 1–14. https://doi.org/10.3390/nu12020283
- Oliveira, A., Ribeiro, H. G., Silva, A. C., Silva, M. D., Sousa, J. C., Rodrigues, C. F., Melo, L. D. R., Henriques, A. F., & Sillankorva, S. (2017). Synergistic antimicrobial interaction between honey and phage against Escherichia coli biofilms. Frontiers in Microbiology, 8, 2407. https://doi.org/10.3389/fmicb.2017.02407
- Önür, İ., Misra, N. N., Barba, F. J., Putnik, P., Lorenzo, J. M., Gökmen, V., & Alpas, H. (2018). Effects of ultrasound and high pressure on physicochemical properties and HMF formation in Turkish honey types. Journal of Food Engineering, 219, 129–136. https://doi.org/10.1016/j.jfoodeng.2017.09.019
- Organic Federation of Canada. (2020). Organic production systems: General principles and management standards. Section 7.1 – Apiculture. Canadian General Standards Board: Standards Council of Canada. http://www.organicfederation.ca/publication-2020-canadian-organic-standards
- Ota, M., Ishiuchi, K., Xu, X., Minami, M., Nagachi, Y., Yagi-Utsumi, M., Tabuchie, Y., Cai, S.-Q., & Makino, T. (2019). The immunostimulatory effects and chemical characteristics of heated honey. Journal of Ethnopharmacology, 228, 11–17. https://doi.org/10.1016/j.jep.2018.09.019
- Özkök, D., & Silici, S. (2016). Effects of honey HMF on enzyme activities and serum biochemical parameters of Wistar rats. Environmental Science and Pollution Research, 23, 20186–20193. https://doi.org/10.1007/s11356-016-7218-8
- Pimentel-Gonzalez, D. J., Basilio-Cortes, U. A., Hernandez-Fuentes, A. D., Figueira, A. C., Quintero-Lira, A., & Campos-Montiel, R. G. (2017). Effect of thermal processing on antibacterial activity of multifloral honeys. Journal of Food Process Engineering, 40, e12279. https://doi.org/10.1111/jfpe.12279
- Pimentel-González, D. J., Jiménez-Alvarado, R., Hernández-Fuentes, A. D., Figueira, A. C., Suarez-Vargas, A., & Campos-Montiel, R. G. (2016). Potentiation of bioactive compounds and antioxidant activity in artisanal honeys using specific heat treatments. Journal of Food Biochemistry, 40(1), 47–52. https://doi.org/10.1111/jfbc.12186
- Pinto, C. A., Moreira, S. A., Fidalgo, L. G., Inácio, R. S., Barba, F. J., & Saraiva, J. A. (2020). Effects of high-pressure processing on fungi spores: Factors affecting spore germination and inactivation and impact on ultrastructure. Comprehensive Reviews in Food Science and Food Safety, 19(2), 553–573. https://doi.org/10.1111/1541-4337.12534
- Postmes, T., van den Bogaard, A. E., & Hazen, M. (1995). The sterilization of honey with cobalt 60 gamma radiation: A study of honey spiked with spores of Clostridium botulinum and Bacillus subtilis. Experientia, 51(9–10), 986–989. https://doi.org/10.1007/BF01921753
- Pyrzynska, K., & Biesaga, M. (2009). Analysis of phenolic acids and flavonoids in honey. Trends in Analytical Chemistry, 28(7), 893–902. https://doi.org/10.1016/j.trac.2009.03.015
- Quintero-Lira, A., Ángeles Santos, A., Aguirre-Álvarez, G., Reyes-Munguía, A., Almaraz-Buendía, I., & Campos-Montiel, R. G. (2017). Effects of liquefying crystallized honey by ultrasound on crystal size, 5-hydroxymethylfurfural, colour, phenolic compounds and antioxidant activity. European Food Research and Technology, 243(4), 619–626. https://doi.org/10.1007/s00217-016-2775-0
- Rajapakse, T. B. J. (2011). High-power ultrasound to control honey crystallisation (Short report No. 144). University of Queensland.
- Razali, M. F., Mohd Fauzi, N. A., Sulaiman, A., Talip, B. A., & Rahman, A. A. (2019). Effect of high-pressure processing on prebiotic potential of stingless bee (Kelulut) honey: Tested upon Lactobacillus acidophilus and Lactobacillus brevis. Journal of Food Processing and Preservation, 43(7), e13946. https://doi.org/10.1111/jfpp.13946
- Reynolds, A. (2019). Influence of microwave treatment on honey quality. Progressive Agriculture, 30(1), 125–140. https://doi.org/10.3329/pa.v30i1.42219
10.3329/pa.v30i1.42219 Google Scholar
- Roberts, A. E. L., Powell, L. C., Pritchard, M. F., Thomas, D. W., Jenkins, R. E., & Carter, D. (2019). Anti-pseudomonad activity of manuka honey and antibiotics in a specialized ex vivo model simulating cystic fibrosis lung infection. Frontiers in Microbiology, 10, 1–10. https://doi.org/10.3389/fmicb.2019.00869
- Roig-Sagués, A. X., Gervilla, R., Pixner, S., Terán-Peñafiel, T., & Hernández-Herrero, M. M. (2018). Bactericidal effect of ultraviolet-C treatments applied to honey. LWT - Food Science and Technology, 89, 566–571. https://doi.org/10.1016/j.lwt.2017.11.010
- Sahinler, N. (2007). Effects of heating and storage on hydroxy methylfurfural and diastase activity of different Turkish honeys. Journal of Apicultural Research, 46(1), 34–39. https://doi.org/10.1080/00218839.2007.11101364
- Saric, G., Markovic, K., Vukicevic, D., Lez, E., Hruskar, M., & Vahcic, N. (2013). Changes of antioxidant activity in honey after heat treatment. Czech Journal of Food Science, 31(6), 601–606.
- Saxena, S., Gautam, S., & Sharma, A. (2010). Microbial decontamination of honey of Indian origin using gamma radiation and its biochemical and organoleptic properties. Journal of Food Science, 75(1), M19–M27. https://doi.org/10.1111/j.1750-3841.2009.01405.x
- Saxena, S., Panicker, L., & Gautam, S. (2014). Rheology of Indian honey: Effect of temperature and gamma radiation. International Journal of Food Science, 2014, 1–6. https://doi.org/10.1155/2014/935129
10.1155/2014/935129 Google Scholar
- Scepankova, H., Saraiva, J. A., & Estevinho, L. M. (2017). Honey health benefits and uses in medicine. In J. Alvarez-Suarez (Ed.), Bee products - Chemical and biological properties (pp. 83–96). Springer International Publishing. https://doi.org/10.1007/978-3-319-59689-1_4
10.1007/978-3-319-59689-1_4 Google Scholar
- Schvezov, N., Pucciarelli, A. B., Valdes, B., & Dallagnol, A. M. (2020). Characterization of yateí (Tetragonisca fiebrigi) honey and preservation treatments: Dehumidification, pasteurization and refrigeration. Food Control, 111, 107080. https://doi.org/10.1016/j.foodcont.2019.107080
- Semprini, A., Singer, J., Braithwaite, I., Shortt, N., Thayabaran, D., Mcconnell, M., Weatherall, M., & Beasley, R. (2019). Kanuka honey versus aciclovir for the topical treatment of herpes simplex labialis: A randomised controlled trial. BMJ Open, 9, e026201. https://doi.org/10.1136/bmjopen-2018-026201
- Serreira, M. J., de Alencar Arnaut de Toledo, V., & Marchini, L. C. (2010). Microorganisms in organic and non organic honey samples of africanized honeybees. Journal of Apicultural Science, 54(1), 149–154. https://doi.org/10.1186/1472-5
- Shapla, U. M., Alam, N., Khalil, I., & Gan, S. H. (2018). 5‑Hydroxymethylfurfural (HMF) levels in honey and other food products: Effects on bees and human health. Chemistry Central Journal, 12, 35. https://doi.org/10.1186/s13065-018-0408-3
- Singh, I., & Singh, S. (2018). Honey moisture reduction and its quality. Journal of Food Science and Technology, 55(10), 3861–3871. https://doi.org/10.1007/s13197-018-3341-5
- Snowdon, J. A., & Cliver, D. O. (1996). Microorganisms in honey. International Journal of Food Microbiology, 31(1–3), 1–26. https://doi.org/10.1007/978-4-431-53898-1
- Stasiak, D. M., & Dolatowski, Z. J. (2007). Effect of sonication on the crystallization of honeys. Polish Journal of Food and Nutrition Sciences, 57(3), 133–136.
- Subramanian, R., Umesh Hebbar, H., & Rastogi, N. K. (2007). Processing of honey: A review. International Journal of Food Properties, 10(1), 127–143. https://doi.org/10.1080/10942910600981708
- Thrasyvoulou, A., Manikis, J., & Tselios, D. (1994). Liquefying crystallized honey with ultrasonic waves. Apidologie, 25(3), 297–302. https://doi.org/10.1051/apido:19940304
- Thrasyvoulou, A., Tananaki, C., Goras, G., Dimou, M., Liolios, V., Kanelis, D., & Goras, G. (2018). Legislation of honey criteria and standards. Journal of Apicultural Research, 57(1), 88–96. https://doi.org/10.1080/00218839.2017.1411181
- Tosi, E. A., Ré, E., Lucero, H., & Bulacio, L. (2004). Effect of honey high-temperature short-time heating on parameters related to quality, crystallisation phenomena and fungal inhibition. LWT - Food Science and Technology, 37(6), 669–678. https://doi.org/10.1016/j.lwt.2004.02.005
- Turhan, I., Tetik, N., Karhan, M., Gurel, F., & Reyhan Tavukcuoglu, H. (2008). Quality of honeys influenced by thermal treatment. LWT - Food Science and Technology, 41(8), 1396–1399. https://doi.org/10.1016/j.lwt.2007.09.008
- Verzola, F. F. V., Marquez, D. C., Punzalan, J. M., Quiming, N. S., Nicolas, M. G., & Simon, R. C. (2019). Effect of gamma-irradiation on the antioxidant activity of Lukotan honey from Sierra Madre. Proceedings of the Samahang Pisika Ng Pilipinas, SPP-2019-PA-09.
- Watanabe, K., Rahmasari, R., Matsunaga, A., Haruyama, T., & Kobayashi, N. (2014). Anti-influenza viral effects of honey in vitro: Potent high activity of manuka honey. Archives of Medical Research, 45(5), 359–365. https://doi.org/10.1016/j.arcmed.2014.05.006
- World Health Organization. (2014). Antimicrobial resistance: Global report on surveillance. Author. https://www.who.int/drugresistance/documents/surveillancereport/en/
- World Health Organization. (2018). Botulism. https://www.who.int/news-room/fact-sheets/detail/botulism
- Yao, Y., Pan, Y., & Liu, S. (2020). Power ultrasound and its applications: A state-of-the-art review. Ultrasonics Sonochemistry, 62, 104722. https://doi.org/10.1016/j.ultsonch.2019.104722
- Yu, H., Liu, Y., Li, L., Guo, Y., Xie, Y., Cheng, Y., & Yao, W. (2020). Ultrasound-involved emerging strategies for controlling foodborne microbial biofilms. Trends in Food Science & Technology, 96, 91–101. https://doi.org/10.1016/j.tifs.2019.12.010
- Zamora, M. C., & Chirife, J. (2006). Determination of water activity change due to crystallization in honeys from Argentina. Food Control, 17(1), 59–64. https://doi.org/10.1016/j.foodcont.2004.09.003
- Zarei, M., Fazlara, A., & Tulabifard, N. (2019). Effect of thermal treatment on physicochemical and antioxidant properties of honey. Heliyon, 5, e01894. https://doi.org/10.1016/j.heliyon.2019.e01894