Agave inulin as a fat replacer in tamales: Physicochemical, nutritional, and sensory attributes
Johanan Espinosa-Ramírez
School, of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
Contribution: Writing - review & editing, Data curation, Validation
Search for more papers by this authorJuan de Dios Figueroa-Cárdenas
CINVESTAV, Unidad Querétaro, Santiago de Querétaro, Querétaro, Mexico
Contribution: Writing - review & editing, Formal analysis
Search for more papers by this authorCristina Chuck-Hernández
Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
Contribution: Writing - review & editing, Methodology
Search for more papers by this authorLuis Eduardo Garcia-Amezquita
School of Engineering and Sciences, Food and Biotech Lab, Tecnologico de Monterrey, Zapopan, Jalisco, Mexico
Contribution: Formal analysis, Methodology
Search for more papers by this authorJuan Pablo Dávila-Vega
Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
Contribution: Formal analysis, Methodology
Search for more papers by this authorVerónica Flores Casamayor
CINVESTAV, Unidad Querétaro, Santiago de Querétaro, Querétaro, Mexico
Contribution: Formal analysis, Methodology
Search for more papers by this authorCorresponding Author
Rosa María Mariscal-Moreno
Departamento de Salud, Universidad Iberoamericana, Ciudad de México, México
Correspondence
Rosa María Mariscal-Moreno, Departamento de Salud, Universidad Iberoamericana, Prolongación Paseo de la Reforma 880, Santa Fe, Álvaro Obregón, Ciudad de México C.P. 01219, México.
Email: [email protected]
Contribution: Conceptualization, Writing - original draft, Funding acquisition
Search for more papers by this authorJohanan Espinosa-Ramírez
School, of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
Contribution: Writing - review & editing, Data curation, Validation
Search for more papers by this authorJuan de Dios Figueroa-Cárdenas
CINVESTAV, Unidad Querétaro, Santiago de Querétaro, Querétaro, Mexico
Contribution: Writing - review & editing, Formal analysis
Search for more papers by this authorCristina Chuck-Hernández
Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
Contribution: Writing - review & editing, Methodology
Search for more papers by this authorLuis Eduardo Garcia-Amezquita
School of Engineering and Sciences, Food and Biotech Lab, Tecnologico de Monterrey, Zapopan, Jalisco, Mexico
Contribution: Formal analysis, Methodology
Search for more papers by this authorJuan Pablo Dávila-Vega
Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
Contribution: Formal analysis, Methodology
Search for more papers by this authorVerónica Flores Casamayor
CINVESTAV, Unidad Querétaro, Santiago de Querétaro, Querétaro, Mexico
Contribution: Formal analysis, Methodology
Search for more papers by this authorCorresponding Author
Rosa María Mariscal-Moreno
Departamento de Salud, Universidad Iberoamericana, Ciudad de México, México
Correspondence
Rosa María Mariscal-Moreno, Departamento de Salud, Universidad Iberoamericana, Prolongación Paseo de la Reforma 880, Santa Fe, Álvaro Obregón, Ciudad de México C.P. 01219, México.
Email: [email protected]
Contribution: Conceptualization, Writing - original draft, Funding acquisition
Search for more papers by this authorAbstract
Tamales are a traditional dish rich in fat and carbohydrates with increasing popularity. The present study aimed to investigate the use of agave inulin powder (AIP) as a potential fat replacer in tamales. The effect of replacing 0%, 33%, 66%, and 100% (w/w) of fat with AIP was evaluated in the physicochemical, sensory, and nutritional features of tamales. The fat content of tamales decreased up to 88% in AIP tamales, whereas total dietary fiber (TDF) increased up to 14%. TDF in AIP tamales had a higher proportion of soluble dietary fiber (SDF). Moreover, results indicated that both insoluble and SDF were formed during the processing of tamales. Fat replacement led to a reduction of up to 26% in the calorie load of tamales. Fourier transform infrared spectroscopy analysis confirmed changes in the absorption bands related to carbohydrates, with increments in peaks associated with inulin (936 and 862 cm−1), and inhibition of retrogradation when inulin was included. AIP addition resulted in tamales with lighter color. Fat replacement with AIP affected the texture of tamales increasing their softness, adhesiveness, and cohesiveness. In general, inulin positively affected the hedonic attributes and acceptance of tamales. Interestingly, full-fat tamales had a lower glycemic index and presented higher contents of resistant starch compared to tamales with AIP. Nevertheless, agave inulin may serve as a fat replacer yielding reduced-fat tamales with higher TDF and SDF and yielding a lower calorie load without significantly affecting the sensory acceptability of this traditional meal.
CONFLICT OF INTEREST STATEMENT
The authors whose names are listed before certify that they have NO affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or nonfinancial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.
REFERENCES
- AACC. (2010). AACC international approved methods of analysis ( 11th ed.). AACC.
- Ahmad, A., & Ayub, H. (2022). Fourier transform infrared spectroscopy (FTIR) technique for food analysis and authentication. In Nondestructive quality assessment techniques for fresh fruits and vegetables (pp. 103–142). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-5422-1_6
10.1007/978-981-19-5422-1_6 Google Scholar
- Cruz-Vazquez, C., Villanueva-Carvajal, A., Estrada-Campuzano, G., & Dominguez-Lopez, A. (2019). Tamales texture properties as a function of corn endosperm type. International Journal of Gastronomy and Food Science, 16, 100153. https://doi.org/10.1016/j.ijgfs.2019.100153
- De Pilli, T., Derossi, A., Talja, R. A., Jouppila, K., & Severini, C. (2011). Study of starch-lipid complexes in model system and real food produced using extrusion-cooking technology. Innovative Food Science and Emerging Technologies, 12(4), 610–616. https://doi.org/10.1016/j.ifset.2011.07.011
- de Dios Figueroa-Cárdenas, J., Véles-Medina, J. J., Esquivel-Martínez, A. M., Mariscal-Moreno, R. M., Santiago-Ramos, D., & Hernández-Estrada, Z. J. (2016). Effect of processing procedure on the formation of resistant starch in tamales. Starch/Stärke, 68, 1121–1128. https://doi.org/10.1002/star.201600091
- Devereux, H. M., Jones, G. P., McCormack, L., & Hunter, W. C. (2003). Consumer acceptability of low fat foods containing inulin and oligofructose. Journal of Food Science, 68(5), 1850–1854. https://doi.org/10.1111/j.1365-2621.2003.tb12341.x
- Englyst, H. N., Kingman, S. M., & Cummings, J. H. (1992). Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition, 46, s33–s50.
- Espinosa-Andrews, H., Urías-Silvas, J. E., & Morales-Hernández, N. (2021). The role of agave fructans in health and food applications: A review. Trends in Food Science and Technology, 114, 585–598. https://doi.org/10.1016/j.tifs.2021.06.022
- Franck, A. (2002). Technological functionality of inulin and oligofructose. British Journal of Nutrition, 87(S2), S287–S291. https://doi.org/10.1079/bjn/2002550
- Goñi, I., Garcia-Alonso, A., & Saura-Calixto, F. (1997). A starch hydrolysis procedure to estimate glycemic index. Nutrition Research, 17(3), 427–437.
- Granfeldt, Y. (1994). Food factors affecting metabolic responses to cereal products [PhD dissertation, University of Lund, Lund, Sweden].
- IFST. (2020). Guidelines for ethical and professional practices for the sensory analysis of foods. https://www.ifst.org/membership/networks-and-communities/special-interest-groups/sensory-science-group/ifst-guidelines
- Ji, X., Wang, Z., Jin, X., Qian, Z., Qin, L., Guo, X., Yin, M., & Liu, Y. (2022). Effect of inulin on the pasting and retrogradation characteristics of three different crystalline starches and their interaction mechanism. Frontiers in Nutrition, 9, 978900. https://doi.org/10.3389/fnut.2022.9789
- Karimi, R., Azizi, M. H., Ghasemlou, M., & Vaziri, M. (2015). Application of inulin in cheese as prebiotic, fat replacer and texturizer: A review. Carbohydrate Polymers, 119, 85–100. https://doi.org/10.1016/j.carbpol.2014.11.029
- Kou, X., Luo, D., Zhang, K., Xu, W., Li, X., Xu, B., Li, P., Han, S., & Liu, J. (2019). Textural and staling characteristics of steamed bread prepared from soft flour added with inulin. Food Chemistry, 301, 125272. https://doi.org/10.1016/j.foodchem.2019.125272
- Macagnan, F. T., da Silva, L. P., & Hecktheuer, L. H. (2016). Dietary fibre: The scientific search for an ideal definition and methodology of analysis, and its physiological importance as a carrier of bioactive compounds. Food Research International, 85, 144–154. https://doi.org/10.1016/j.foodres.2016.04.032
- Mariscal-Moreno, R. M., Figueroa-Cárdenas, J. D., Santiago-Ramos, D., & Rayas-Duarte, P. (2019). Amylose lipid complexes formation as an alternative to reduce amylopectin retrogradation and staling of stored tortillas. International Journal of Food Science and Technology, 54, 1651–1657. https://doi.org/10.1111/ijfs.14040
- Mariscal-Moreno, R. M., Figueroa Cárdenas, J. D., Santiago-Ramos, D., Rayas-Duarte, P., Veles-Medina, J. J., & Martínez-Flores, H. E. (2017). Nixtamalization process affects resistant starch formation and glycemic index of tamales. Journal of Food Science, 82(5), 1110–1115. https://doi.org/10.1111/1750-3841.13703
- Márquez-Aguirre, A. L., Camacho-Ruiz, R. M., Arriaga-Alba, M., Padilla-Camberos, E., Kirchmayr, M. R., Blasco, J. L., & González-Avila, M. (2013). Effects of Agave tequilana fructans with different degree of polymerization profiles on the body weight, blood lipids and count of fecal Lactobacilli/Bifidobacteria in obese mice. Food & function, 4(8), 1237–1244. https://doi.org/10.1039/c3fo60083a
- McCleary, B. V., DeVries, J. W., Rader, J. I., Cohen, G., Prosky, L., Mugford, D. C., Champ, M., & Okuma, K. (2012). Determination of insoluble, soluble, and total dietary fiber (CODEX definition) by enzymatic-gravimetric method and liquid chromatography: Collaborative study. Journal of AOAC International, 95(3), 824–844.
- Modzelewska-KapituŁa, M., & KŁȩbukowska, L. (2009). Investigation of the potential for using inulin HPX as a fat replacer in yoghurt production. International Journal of Dairy Technology, 62(2), 209–214. https://doi.org/10.1111/j.1471-0307.2009.00481.x
- Mudgil, D. (2017). The interaction between insoluble and soluble fiber. In Dietary fiber for the prevention of cardiovascular disease (pp. 35–59). Academic Press.
10.1016/B978-0-12-805130-6.00003-3 Google Scholar
- Narala, V. R., Orlovs, I., Jugbarde, M. A., & Masin, M. (2022). Inulin as a fat replacer in pea protein vegan ice cream and its influence on textural properties and sensory attributes. Applied Food Research, 2, 100066. https://doi.org/10.1016/j.afres.2022.100066
- Panyoo, A. E., & Emmambux, M. N. (2017). Amylose–lipid complex production and potential health benefits: A mini-review. Starch/Stärke, 69(7–8), 1600203. https://doi.org/10.1002/star.201600203
- Pourfarzad, A., Habibi Najafi, M. B., Haddad Khodaparast, M. H., & Khayyat, M. H. (2015). Serish inulin and wheat biopolymers interactions in model systems as a basis for understanding the impact of inulin on bread properties: A FTIR investigation. Journal of Food Science and Technology, 52(12), 7964–7973. https://doi.org/10.1007/s13197-015-1939-4
- Rodríguez-Huezo, M. E., Flores-Silva, P. C., Garcia-Diaz, S., Meraz, M., Vernon-Carter, E. J., & Alvarez-Ramirez, J. (2018). Effect of fat type on starch and protein digestibility of traditional tamales. Starch-Stärke, 70, 1700286.
- Ruiz-Capillas, C., & Herrero Herranz, A. (2021). Sensory analysis and consumer research in new product development. MDPI. www.mdpi.com/journal/foods
- Santiago-García, P. A., Mellado-Mojica, E., León-Martínez, F. M., Dzul-Cauich, J. G., López, M. G., & García-Vieyra, M. I. (2021). Fructans (agavins) from Agave angustifolia and Agave potatorum as fat replacement in yogurt: Effects on physicochemical, rheological, and sensory properties. LWT, 140, 110846. https://doi.org/10.1016/j.lwt.2020.110846
- Santiago-García, P. A., Mellado-Mojica, E., León-Martínez, F. M., & López, M. G. (2017). Evaluation of Agave angustifolia fructans as fat replacer in the cookies manufacture. LWT, 77, 100–109. https://doi.org/10.1016/j.lwt.2016.11.028
- Statista. (2021). Favorite local dishes in Mexico in 2021. https://www.statista.com/statistics/1038957/local-dishes-mexico/
- Technavio. (2022). Packaged tamales market by product and geography—Forecast and analysis 2021–2025. https://www.technavio.com/report/packaged-tamales-market-industry-analysis
- Van Soest, J. J. G., de Wit, D., Tournois, H., & Vliegenthart, J. F. G. (1994). Retrogradation of potato starch as studied by Fourier transform infrared spectroscopy. Starch/Stärke, 46(12), 453–457.
- Westenbrink, S., Brunt, K., & van der Kamp, J. W. (2013). Dietary fibre: Challenges in production and use of food composition data. Food Chemistry, 140(3), 562–567.
- WHO. (2020). Healthy diet. https://www.who.int/news-room/fact-sheets/detail/healthy-diet#:~:text=Intake%20of%20saturated%20fats%20should,4%2C%205%2C%206
- Wolever, T. M. (1990). Relationship between dietary fiber content and composition in foods and the glycemic index. The American Journal of Clinical Nutrition, 51, 72–77. https://academic.oup.com/ajcn/article-abstract/51/1/72/4695000
- Ye, X., Li, P., Lo, Y. M., Fu, H., & Cao, Y. (2019). Development of novel shortenings structured by ethylcellulose oleogels. Journal of Food Science, 84(6), 1456–1464. https://doi.org/10.1111/1750-3841.14615
- Yitayew, T., Moges, D., & Satheesh, N. (2022). Effect of brewery spent grain level and fermentation time on the quality of bread. International Journal of Food Science, 2022, 1–10. https://doi.org/10.1155/2022/8704684
10.1155/2022/8704684 Google Scholar