Technological properties of chickpea (Cicer arietinum): Production of snacks and health benefits related to type-2 diabetes
Karla A. Acevedo Martinez
Department of Food Science and Human Nutrition, University of Illinois at Urbana Champaign, Urbana, Illinois, USA
Search for more papers by this authorMary M. Yang
Department of Food Science and Human Nutrition, University of Illinois at Urbana Champaign, Urbana, Illinois, USA
Search for more papers by this authorCorresponding Author
Elvira Gonzalez de Mejia
Department of Food Science and Human Nutrition, University of Illinois at Urbana Champaign, Urbana, Illinois, USA
Correspondence
Elvira Gonzalez de Mejia, Department of Food Science and Human Nutrition, University of Illinois at Urbana Champaign, 1201 West Gregory Dr., Urbana, IL 61801, USA.
Email: [email protected]
Search for more papers by this authorKarla A. Acevedo Martinez
Department of Food Science and Human Nutrition, University of Illinois at Urbana Champaign, Urbana, Illinois, USA
Search for more papers by this authorMary M. Yang
Department of Food Science and Human Nutrition, University of Illinois at Urbana Champaign, Urbana, Illinois, USA
Search for more papers by this authorCorresponding Author
Elvira Gonzalez de Mejia
Department of Food Science and Human Nutrition, University of Illinois at Urbana Champaign, Urbana, Illinois, USA
Correspondence
Elvira Gonzalez de Mejia, Department of Food Science and Human Nutrition, University of Illinois at Urbana Champaign, 1201 West Gregory Dr., Urbana, IL 61801, USA.
Email: [email protected]
Search for more papers by this authorAbstract
Chickpea (Cicer arietinum) is one of the most consumed pulses worldwide (over 2.3 million tons enter the world market annually). Some chickpea components have shown, in preclinical and clinical studies, several health benefits, including antioxidant capacity, and antifungal, antibacterial, analgesic, anticancer, antiinflammatory, and hypocholesterolemic properties, as well as angiotensin I-converting enzyme inhibition. In the United States, chickpea is consumed mostly in the form of hummus. However, the development of new products with value-added bioactivity is creating new opportunities for research and food applications. Information about bioactive compounds and functional properties of chickpea ingredients in the development of new products is needed. The objective of this review was to summarize available scientific information, from the last 15 years, on chickpea production, consumption trends, applications in the food industry in the elaboration of plant-based snacks, and on its bioactive compounds related to type 2 diabetes (T2D). Areas of opportunity for future research and new applications of specific bioactive compounds as novel food ingredients are highlighted. Research is key to overcome the main processing obstacles and sensory challenges for the application of chickpea as ingredient in snack preparations. The use of chickpea bioactive compounds as ingredient in food products is also a promising area for accessibility of their health benefits, such as the management of T2D.
CONFLICTS OF INTEREST
The authors declare no conflicts of interest.
REFERENCES
- Abbasifard, M., Bazzaz, A., Bazmandegan, G., Rezaeian, M., Saeedaskari, P., Mahmoodian, H., & Zareshahi, R. (2020). Effect of topical chickpea oil (Cicer arietinum L.) on knee osteoarthritis: A randomized double-blind controlled clinical trial. European Journal of Integrative Medicine, 35. https://doi.org/10.1016/j.eujim.2020.101076
- Aguilar, N., Albanell, E., Miñarro, B., & Capellas, M. (2015). Chickpea and tiger nut flours as alternatives to emulsifier and shortening in gluten-free bread. LWT - Food Science and Technology, 62(1), 225–232. https://doi.org/10.1016/j.lwt.2014.12.045
- Ahmadi, N., Mokaberinejad, R., Saeidi, A., Zandi, A., Leach, M. J., & Pasalar, M. (2020). The effect of chickpea broth on knee osteoarthritis—A pilot non-randomised open-labeled clinical study. Advances in Integrative Medicine, 7(3). https://doi.org/10.1016/j.aimed.2020.01.004
- Ajita, T. (2018). Extrusion cooking technology: An advance skill for manufacturing of extrudate food products. In Extrusion of metals, polymers and food products. https://doi.org/10.5772/intechopen.73496
10.5772/intechopen.73496 Google Scholar
- Ali, S., Singh, B., & Sharma, S. (2017). Development of high-quality weaning food based on maize and chickpea by twin-screw extrusion process for low-income populations. Journal of Food Process Engineering, 40(3), e12500. https://doi.org/10.1111/jfpe.12500
- Altaf, U., Zameer Hussain, S., Qadri, T., Aafiya Ishrat, S., & Kanojia, V. (2020). Optimization of extrusion process for development of nutritious snacks using rice and chickpea flour. Journal of Scientific & Industrial Research, 79, 430–436.
- Armaforte, E., Hopper, L., & Stevenson, G. (2021). Preliminary investigation on the effect of proteins of different leguminous species (Cicer arietinum, Vicia faba and Lens culinarius) on the texture and sensory properties of egg-free mayonnaise. Science and Technology, 136(2), 110341. https://doi.org/10.1016/j.lwt.2020.110341
- Bagheri, H., Kashaninejad, M., Ziaiifar, A. M., & Aalami, M. (2016). Novel hybridized infrared-hot air method for roasting of peanut kernels. Innovative Food Science and Emerging Technologies, 37, 106–114. https://doi.org/10.1016/j.ifset.2016.08.014
- Bar-El Dadon, S., Abbo, S., & Reifen, R. (2017). Leveraging traditional crops for better nutrition and health — The case of chickpea. Trends in Food Science and Technology, 64, 39–47. https://doi.org/10.1016/j.tifs.2017.04.002
- Bar-El Dadon, S., Reifen, R., & Schuring, M. (2019). Chickpea protein concentrate (Patent No. AU2017294711A1). https://patents.google.com/patent/AU2017294711A1/en?q=chickpea+products&oq=chickpea+products
- Bhagyawant, S. S., Narvekar, D. T., Gupta, N., Bhadkaria, A., Gautam, A., & Srivastava, N. (2019). Chickpea (Cicer arietinum L.) lectin exhibit inhibition of ACE-I alpha-amylase and alpha-glucosidase activity. Protein and Peptide Letters, 26(7), 494–501. https://doi.org/10.2174/0929866526666190327130037
- Bond, J. K. (2017). Pulses production expanding as consumers cultivate a taste for U.S. lentils and chickpeas. Retrieved from USDA website: https://www.ers.usda.gov/amber-waves/2017/januaryfebruary/pulses-production-expanding-as-consumers-cultivate-a-taste-for-us-lentils-and-chickpeas/
- Boukid, F., Zannini, E., Carini, E., & Vittadini, E. (2019). Pulses for bread fortification: A necessity or a choice? Trends in Food Science and Technology, 88, 416–428. https://doi.org/10.1016/j.tifs.2019.04.007
- Cappelli, A., Oliva, N., Bonaccorsi, G., Lorini, C., & Cini, E. (2020). Assessment of the rheological properties and bread characteristics obtained by innovative protein sources (Cicer arietinum, Acheta domesticus, Tenebrio molitor): Novel food or potential improvers for wheat flour? LWT - Food Science and Technology, 118, 108867. https://doi.org/10.1016/j.lwt.2019.108867
- Capriles, V. D., & Arêas, J. A. G. (2014). Novel approaches in gluten-free breadmaking: Interface between food science, nutrition, and health. Comprehensive Reviews in Food Science and Food Safety, 13(5), 871–890. https://doi.org/10.1111/1541-4337.12091
- Chandrasekaran, S., Luna-Vital, D., & de Mejia, E. G. (2020). Identification and comparison of peptides from chickpea protein hydrolysates using either bromelain or gastrointestinal enzymes and their relationship with markers of type 2 diabetes and bitterness. Nutrients, 12(12), 3843. https://doi.org/10.3390/nu12123843
- Cornelio-Santiago, H. P., Gonçalves, C. B., de Oliveira, N. A., & de Oliveira, A. L. (2017). Supercritical CO2 extraction of oil from green coffee beans: Solubility, triacylglycerol composition, thermophysical properties and thermodynamic modelling. Journal of Supercritical Fluids, 128, 386–394. https://doi.org/10.1016/j.supflu.2017.05.030
- Coşkuner, Y., & Karababa, E. (2004). Leblebi: A roasted chickpea product as a traditional Turkish snack food. Food Reviews International, 20(3), 257–274. https://doi.org/10.1081/FRI-200029424
- De Oliveira, M. S., Silva, S. G., Cruz da, N. J., Ortiz, E., da Costa, W. A., Bezerra, F. W. F., Borges, V. M., Cunha, R. M. C., Neto, A. M. D J. C., & Andrade, A. (2019). Supercritical CO2 application in essential oil extraction. Industrial Applications of Green Solvents: Volume II, 54, 1–28. https://doi.org/10.21741/9781644900314-1
10.21741/9781644900314-1 Google Scholar
- De Pasquale, I., Pontonio, E., Gobbetti, M., & Rizzello, C. G. (2020). Nutritional and functional effects of the lactic acid bacteria fermentation on gelatinized legume flours. International Journal of Food Microbiology, 316(2), 108426. https://doi.org/10.1016/j.ijfoodmicro.2019.108426
- Di Stefano, E., Tsopmo, A., Oliviero, T., Fogliano, V., & Udenigwe, C. C. (2019). Bioprocessing of common pulses changed seed microstructures, and improved dipeptidyl peptidase-IV and α-glucosidase inhibitory activities. Scientific Reports, 9, 15308. https://doi.org/10.1038/s41598-019-51547-5
- Divekar, M. T., Karunakaran, C., Lahlali, R., Kumar, S., Chelladurai, V., Liu, X., Borondics F., Shanmugasundaram S., & Jayas, D. S. (2017). Effect of microwave treatment on the cooking and macronutrient qualities of pulses. International Journal of Food Properties, 20(2), 409–422. https://doi.org/10.1080/10942912.2016.1163578
- Domínguez-Arispuro, D. M., Cuevas-Rodríguez, E. O., Milán-Carrillo, J., León-López, L., Gutiérrez-Dorado, R., & Reyes-Moreno, C. (2018). Optimal germination condition impacts on the antioxidant activity and phenolic acids profile in pigmented desi chickpea (Cicer arietinum L.) seeds. Journal of Food Science and Technology, 55(2), 638–647. https://doi.org/10.1007/s13197-017-2973-1
- Doumani, N., Severin, I., Dahbi, L., Bou-Maroun, E., Tueni, M., Sok, N., Chagnon M.-C., Maalouly J., & Cayot, P. (2020). Lemon juice, sesame paste, and autoclaving influence iron bioavailability of hummus: Assessment by an in vitro digestion/caco-2 cell model. Foods, 9(4), 474. https://doi.org/10.3390/foods9040474
- Euromonitor. (2019). Premiumisation of ingredients: Snacks.
- FAO. (2016). Pulses contribute to food security. Food and Argiculture Organisation of the United Nations.
- FAO. (2019). Global economy of pulses. Rome.
- FAO. (2020). FAOSTAT statistical database. Retrieved from http://www.fao.org/faostat/
- Ferreira, C. D., Bubolz, V. K., da Silva, J., Dittgen, C. L., Ziegler, V., de Oliveira Raphaelli, C., & de Oliveira, M. (2019). Changes in the chemical composition and bioactive compounds of chickpea (Cicer arietinum L.) fortified by germination. LWT, 111, 363–369. https://doi.org/10.1016/j.lwt.2019.05.049
- Gabrial, S. G. N., Shakib, M.-C. R., Haleem, M. S. M. A., Gabrial, G. N., & El-Shobaki, F. A. (2020). Hypoglycemic potential of supplementation with a vegetable and legume juice formula in type 2 diabetic patients. Pakistan Journal of Biological Sciences, 23(2), 132–138. https://doi.org/10.3923/pjbs.2020.132.138
- Garcia-Valle, D. E., Bello-Perez, L. A., & Tovar, J. (2020). Addition of chickpea markedly increases the indigestible carbohydrate content in semolina pasta as eaten. Journal of the Science of Food and Agriculture, 101(7), 2869–2876. https://doi.org/10.1002/jsfa.10918
- Gautam, A.K., Gupta, N., Narvekar, D. T., Bhadkariya, R., & Bhagyawant, S. S. (2018). Characterization of chickpea (Cicer arietinum L.) lectin for biological activity. Physiology and Molecular Biology Plants, 24(3), 389–397. https://doi.org/10.1007/s12298-018-0508-5
- Gautam, A.K., Sharmab, D., Sharma, J., & Chand Saini, K. (2020). Legume lectins: Potential use as a diagnostics and therapeutics against the cancer. International Journal of Biological Macromolecules, 142, 474–483. https://doi.org/10.1016/j.ijbiomac.2019.09.119
- Ghribi, A.M., Gafsi, I.M., Sila, A., Blecker, C., Danthine, S., Attia, H., Bougatef A., & Besbes, S. (2015). Effects of enzymatic hydrolysis on conformational and functional properties of chickpea protein isolate. Food Chemistry, 187, 322–330. https://doi.org/10.1016/j.foodchem.2015.04.109
- Ghribi, A. M., Gafsi, I. M., Blecker, C., Danthine, S., Attia, H., & Besbes, S. (2015). Effect of drying methods on physico-chemical and functional properties of chickpea protein concentrates. Journal of Food Engineering, 165, 179–188. https://doi.org/10.1016/j.jfoodeng.2015.06.021
- Ghumman, A., Kaur, A., & Singh, N. (2016). Impact of germination on flour, protein and starch characteristics of lentil (Lens culinari) and horsegram (Macrotyloma uniflorum L.) lines. LWT - Food Science and Technology, 65, 137–144. https://doi.org/10.1016/j.lwt.2015.07.075
- Guerrero, P., Beatty, E., Kerry, J. P., & De La Caba, K. (2011). Extrusion of soy protein with gelatin and sugars at low moisture content. Journal of Food Engineering, 110(1), 53–59. https://doi.org/10.1016/j.jfoodeng.2011.12.009
- Gupta, R., & Dhillon, S. (1993). Characterization of seed storage proteins of lentil (Lens culinaris M.). Annals of Biology, 9, 71–78.
- Gupta, S., Liu, C., & Sathe, S. K. (2019). Quality of a chickpea-based high protein snack. Journal of Food Science, 84(6), 1621–1630. https://doi.org/10.1111/1750-3841.14636
- Hall, C., Hillen, C., & Garden Robinson, J. (2016). Composition, nutritional value, and health benefits of pulses. Cereal Chemistry, 94(1), 11–31. https://doi.org/10.1094/CCHEM-03-16-0069-FI
- Han, L., Lu, Z.-H., Zhang, J., Chakravarty, B., Jin, L., & Cao, X. (2021). Nutrient and specification enhancement of fortified Asian noodles by chickpea flour substitution and transglutaminase treatment. International Journal of Food Properties, 24(1), 174–191. https://doi.org/10.1080/10942912.2021.1873360
- Harini, S., Adilaxmamma, K., Mohan, E. M., Srilatha, C., & Raj, M. A. (2015). Antihyperlipidemic activity of chickpea sprouts supplementation in ovariectomy-induced dyslipidemia in rats. Journal of Ayurveda and Integrative Medicine, 6(2). https://doi.org/10.4103/0975-9476.146546
- Hernandez-Aguirre, A. I., Téllez-Pérez, C., San Martín-Azócar, A., & Cardador-Martínez, A. (2019). Effect of instant controlled pressure-drop (DIC), cooking and germination on non-nutritional factors of common vetch (Vicia sativa spp.). Molecules (Basel, Switzerland), 25(1), 151. https://doi.org/10.3390/molecules25010151
- Hira, C. K., & Chopra, N. (1995). Effects of roasting on protein quality of chickpea (Cicer arietinum) and peanut (Arachis hypogaea). Journal of Food Science and Technology-Mysore, 32(6), 501–503.
- Hrnčič, M. K., Cör, D., Tancer Verboten, M., & Knez, Ž. (2018). Application of supercritical and subcritical fluids in food processing. Food Quality and Safety, 2(2), 59–67. https://doi.org/10.1093/fqsafe/fyy008
- Hussein, H., Awad, S., El-Sayed, I., & Ibrahim, A. (2020). Impact of chickpea as prebiotic, antioxidant and thickener agent of stirred bio-yoghurt. Annals of Agricultural Sciences, 65(1), 49–58. https://doi.org/10.1016/j.aoas.2020.03.001
- Jogihalli, P., Singh, L., Kumar, K., & Sharanagat, V. S. (2017a). Novel continuous roasting of chickpea (Cicer arietinum): Study on physico-functional, antioxidant and roasting characteristics. LWT - Food Science and Technology, 86, 456–464. https://doi.org/10.1016/j.lwt.2017.08.029
- Jogihalli, P., Singh, L., Kumar, K., & Sharanagat, V. S. (2017b). Physico-functional and antioxidant properties of sand-roasted chickpea (Cicer arietinum). Food Chemistry, 237, 1124–1132. https://doi.org/10.1016/j.foodchem.2017.06.069
- Jogihalli, P., Singh, L., & Sharanagat, V. S. (2017). Effect of microwave roasting parameters on functional and antioxidant properties of chickpea (Cicer arietinum). LWT - Food Science and Technology, 79, 223–233. https://doi.org/10.1016/j.lwt.2017.01.047
- Juárez-Chairez, F. M., Cid-Gallegos, M. S., Meza-Márquez, O. G., & Jiménez-Martínez, C. (2020). Biological ctivities of chickpea in human health (Cicer arietinum L.). A review. Plant Foods for Human Nutrition, 75, 142–153. https://doi.org/10.1007/s11130-020-00814-2
- Kalve, S., & Tadege, M. (2017). A comprehensive technique for artificial hybridization in chickpea (Cicer arietinum). Plant Methods, 13(52), 1–9. https://doi.org/10.1186/s13007-017-0202-6
- Kaur, M., Singh, N., & Sodhi, N. S. (2005). Physicochemical, cooking, textural and roasting characteristics of chickpea (Cicer arietinum L.) cultivars. Journal of Food Engineering, 69(4), 511–517. https://doi.org/10.1016/j.jfoodeng.2004.09.002
- Kinsella, J. E. (1976). Functional properties of proteins in foods: A survey. C R C Critical Reviews in Food Science and Nutrition, 7(3), 219–280. https://doi.org/10.1080/10408397609527208
- Köksel, H., Sivri, D., Scanlon, M. G., & Bushuk, W. (1998). Comparison of physical properties of raw and roasted chickpeas (leblebi). Food Research International, 31(9), 659–665. https://doi.org/10.1016/S0963-9969(99)00042-3
- Kruvi, A., & Barmecha, R. (2018). Patent no. US20180027854A1. Retrieved from https://patents.google.com/patent/US20180027854A1/en
- Kuhn, M. (2020). Meet the next generation of plant based meat. Food Technology, 74(3), 25–34.
- Lakshmana, S., Chandrasekaran, R., Arjun, H. A., & Anantharaman, P. (2019). In vitro and in silico inhibition properties of fucoidan against α-amylase and α-D-glucosidase with relevance to type 2 diabetes mellitus. Carbohydrate Polymers, 209, 350–355. https://doi.org/10.1016/j.carbpol.2019.01.039
- Leonard, W., Zhang, P., Ying, D., & Fang, Z. (2020). Application of extrusion technology in plant food processing byproducts: An overview. Comprehensive Reviews in Food Science and Food Safety, 19(1), 218–246. https://doi.org/10.1111/1541-4337.12514
- Lopes, M., Pierrepont, C., Duarte, C. M., Filipe, A., Medronho, B., & Sousa, I. (2020). Legume beverages from chickpea and lupin, as new milk alternatives. Foods, 9(10), 1458. https://doi.org/10.3390/foods9101458
- López-Cortez, M. D. S., Rosales-Martínez, P., Arellano-Cárdenas, S., & Cornejo-Mazón, M. (2016). Antioxidants properties and effect of processing methods on bioactive compounds of legumes. In Grain legumes. https://doi.org/10.5772/63757
10.5772/63757 Google Scholar
- Malhotra, A. (2012). Chickpea flakes and method of producing chickpea flakes (Patent No. GB2486873A). https://patents.google.com/patent/GB2486873A/en
- Malunga, L. N., Bar-El Dadon, S., Zinal, E., Berkovich, Z., Abbo, S., & Reifen, R. (2014). The potential use of chickpeas in development of infant follow-on formula. Nutrition Journal, 13(1), 1–6. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed12&NEWS=N&AN=2014114932
- Man, S., Păucean, A., Muste, S., & Pop, A. (2015). Effect of the chickpea (Cicer arietinum L.) flour addition on physicochemical properties of wheat bread. Bulletin UASVM Food Science and Technology, 72(1). https://doi.org/10.15835/buasvmcn-fst:11023
- Martinez-Gonzalez, A. I., Díaz-Sánchez, Á. G., Rosa, L. A., Vargas-Requena, C. L., Bustos-Jaimes, I., & Alvarez-Parrilla, A. E. (2017). Polyphenolic compounds and digestive enzymes: In vitro non-covalent interactions. Molecules (Basel, Switzerland), 22(4), 669. https://doi.org/10.3390/molecules22040669
- Martínez-Preciado, A. H., Ponce-Simental, J. A., Schorno, A. L., Contreras-Pacheco, M. L., Michel, C. R., Rivera-Ortiz, K. G., & Soltero, J. F. A. (2020). Characterization of nutritional and functional properties of “Blanco Sinaloa” chickpea (Cicer arietinum L.) variety, and study of the rheological behavior of hummus pastes. Journal of Food Science and Technology, 57, 1856–1865. https://doi.org/10.1007/s13197-019-04220-8
- McHugh, T. (2016). How hummus is processed. Retrieved from IFT website: https://www.ift.org/news-and-publications/food-technology-magazine/issues/2016/july/columns/processing-how-hummus-is-processed
- Meng, X., Threinen, D., Hansen, M., & Driedger, D. (2010). Effects of extrusion conditions on system parameters and physical properties of a chickpea flour-based snack. Food Research International, 43(2), 650–658. https://doi.org/10.1016/j.foodres.2009.07.016
- Merga, B., Haji, J., & Faith Yildiz. (2019). Economic importance of chickpea: Production, value, and world trade. Cogent Food & Agriculture, 5(1), 1–12. https://doi.org/10.1080/23311932.2019.1615718
- Milán-Carrillo, J., Reyes-Moreno, C., Camacho-Hernández, I. L., & Rouzaud-Sandez, O. (2002). Optimisation of extrusion process to transform hardened chickpeas (Cicer arietinum L) into a useful product. Journal of the Science of Food and Agriculture, 82(14), 1718–1728. https://doi.org/10.1002/jsfa.1242
- Milán-Noris, A. K., Gutiérrez-Uribe, J. A., Santacruz, A., Serna-Saldívar, S. O., & Martínez-Villaluenga, C. (2018). Peptides and isoflavones in gastrointestinal digests contribute to the anti-inflammatory potential of cooked or germinated desi and kabuli chickpea (Cicer arietinum L.). Food Chemistry, 268(May), 66–76. https://doi.org/10.1016/j.foodchem.2018.06.068
- Mintel Reports. (2019). US plant-based proteins market report.
- Mirmiran, P., Hosseini, S., Hosseinpour-Niazi, S., & Azizi, F. (2019). Legume consumption increase adiponectin concentrations among type 2 diabetic patients: A randomized crossover clinical trial. Endocrinologia, Diabetes y Nutricion, 66(1), 49–55. https://doi.org/10.1016/j.endinu.2018.07.003
- Monk, J. M., Lepp, D., Wu, W., Graf, D., McGillis, L. H., Hussain, A., Carey C., Robinson L. E., Liu R., Tsao R., Brummer Y., Tosh S. M., & Power, K. A. (2017). Chickpea-supplemented diet alters the gut microbiome and enhances gut barrier integrity in C57Bl/6 male mice. Journal of Functional Foods, 38, 663–674. https://doi.org/10.1016/j.jff.2017.02.002
- Monk, J. M., Zhang, C. P., Wu, W., Zarepoor, L., Lu, J. T., Liu, R., Pauls K P., Wood G. A., Tsao R., Robinson L. E., & Power, K. A. (2015). White and dark kidney beans reduce colonic mucosal damage and inflammation in response to dextran sodium sulfate. Journal of Nutritional Biochemistry, 26(7), 752–760. https://doi.org/10.1016/j.jnutbio.2015.02.003
- Mukhopadhyay, S. P., Wood, J. A., Saliba, A. J., Blanchard, C. L., Carr, B. T., & Prenzler, P. D. (2015). Evaluation of puffing quality of Australian desi chickpeas by different physical attributes. LWT - Food Science and Technology, 64(2), 959–965. https://doi.org/10.1016/j.lwt.2015.06.068
- Neelam, K., Vijay, S., & Lalit, S. (2012). Various techniques for the modification of starch and the applications of its derivatives. International Research Journal of Pharmacy, 3, 25–31.
- Neuwirth, R., Priesner, R., & Wastyn, M. M. (2019). Method for producing pre-gelatinised chickpea flour (Patent No. EP3459361A1). https://patents.google.com/patent/EP3459361A1/en?q=chickpea+products&oq=chickpea+products
- Nikmaram, N., Leong, Y., Koubaa, M., Zhu, Z., Barba, F. J., Greiner, R., Oey I., & Roohinejad, S. (2017). Effect of extrusion on the anti-nutritional factors of food products: An overview. Food Control, 79, 63–73. https://doi.org/10.1016/j.foodcont.2017.03.027
- Nosworthy, M. G., Medina, G., Franczyk, A. J., Neufeld, J., Appah, P., Utioh, A., Frohlich P., Tar'an B., & House, J. D. (2020). Thermal processing methods differentially affect the protein quality of chickpea (Cicer arietinum). Food Science & Nutrition, 8(6), 2950–2958. https://doi.org/10.1002/fsn3.1597
- Ohanenye, I. C., Tsopmo, A., Ejike, C. E. C. C., & Udenigwe, C. C. (2020). Germination as a bioprocess for enhancing the quality and nutritional prospects of legume proteins. Trends in Food Science and Technology, 101, 213–222. https://doi.org/10.1016/j.tifs.2020.05.003
- Olojede, A. O., Sanni, A. I., & Banwo, K. (2020). Effect of legume addition on the physiochemical and sensorial attributes of sorghum-based sourdough bread. LWT - Food Science and Technology, 118, 108769. https://doi.org/10.1016/j.lwt.2019.108769
- Ouazib, M., Garzon, R., Zaidi, F., & Rosell, C. M. (2016). Germinated, toasted and cooked chickpea as ingredients for breadmaking. Journal of Food Science and Technology, 53(6), 2664–2672. https://doi.org/10.1007/s13197-016-2238-4
- Ovchinnikov, A. S., Petrov, N. Y., Kalmykova, E. V., Kalmykova, O. V., Borisova, A. G., Lapin, P. A., & Zvolinsky, V. P. (2018). Method of producing chickpea chips and composition of aromatic seasoning for their cooking (Patent No. RU2663988C1). https://patents.google.com/patent/RU2663988C1/en?q=chickpea
- Ozturk, T., & Topal, B. (2018). Natural instant soup with low glycaemic index (Patent No. US20180352840A1). https://patents.google.com/patent/US20180352840A1/en
- Pathania, S., Kaur, A., & Sachdev, P. A. (2017). Chickpea flour supplemented high protein composite formulation for flatbreads: Effect of packaging materials and storage temperature on the ready mix. Food Packaging and Shelf Life, 11, 125–132. https://doi.org/10.1016/j.fpsl.2017.01.006
- Patil, S., Brennan, M., Mason, S., & Brennan, C. (2016). The effects of fortification of legumes and extrusion on the protein digestibility of wheat based snack. Foods, 5(4), 26. https://doi.org/10.3390/foods5020026
- Perri, G., Calabrese, F. M., Rizzello, C. G., De Angelis, M., Gobbetti, M., & Calasso, M. (2020). Sprouting process affects the lactic acid bacteria and yeasts of cereal, pseudocereal and legume flours. LWT - Food Science and Technology, 126, 109314. https://doi.org/10.1016/j.lwt.2020.109314
- Rababah, T. M., Brewer, S., Yang, W., Al-Mahasneh, M., Al-U'datt, M., Rababa, S., & Ereifej, K. (2012). Physicochemical properties of fortified corn chips with broad bean flour, chickpea flour or isolated soy protein. Journal of Food Quality, 35(3), 200–206. https://doi.org/10.1111/j.1745-4557.2012.00440.x
- Rachwa-Rosiak, D., Nebesny, E., & Budryn, G. (2015). Chickpeas—Composition, nutritional value, health benefits, application to bread and snacks: A review. Critical Reviews in Food Science and Nutrition, 55(8), 1137–1145. https://doi.org/10.1080/10408398.2012.687418
- Rathod, R. P., & Annapure, U. S. (2016). Effect of extrusion process on antinutritional factors and protein and starch digestibility of lentil splits. LWT - Food Science and Technology, 66, 114–123. https://doi.org/10.1016/j.lwt.2015.10.028
- Ravi, R., Ajila, C. M., & Rao, U. J. S. P. (2011). Role of steaming and toasting on the odor, protein characteristics of chickpea (Cicer arietinum L.) flour, and product quality. Journal of Food Science, 76(2), S148–S155. https://doi.org/10.1111/j.1750-3841.2010.01977.x
- Real Hernandez, L. M., & Gonzalez de Mejia, E. (2019). Enzymatic production, bioactivity, and bitterness of chickpea (Cicer arietinum) peptides. Comprehensive Reviews in Food Science and Food Safety, 18(6), 1913–1946.
- Riaz, Z., Najabat Ali, M., Qureshi, Z., & Mohsin, M. (2020). In vitro investigation and evaluation of novel drug based on polyherbal extract against Type 2 Diabetes. Journal of Diabetes Research, 4(Article ID 7357482), 1–9. https://doi.org/10.1155/2020/7357482
- Röhrborn, D., Wronkowitz, N., & Eckel, J. (2015). DPP4 in diabetes. Frontiers in Immunology, 6, 386. https://doi.org/10.3389/fimmu.2015.00386
- Ruiz-Gutiérrez, M. G., Sánchez-Madrigal, M. Á., & Quintero-Ramos, A. (2018). The extrusion cooking process for the development of functional foods. In Extrusion of metals, polymers and food products. https://doi.org/10.5772/intechopen.68741
10.5772/intechopen.68741 Google Scholar
- Sáez, G. D., Saavedra, L., Hebert, E. M., & Zárate, G. (2018). Identification and biotechnological characterization of lactic acid bacteria isolated from chickpea sourdough in northwestern Argentina. LWT, 93, 249–256. https://doi.org/10.1016/j.lwt.2018.03.040
- Santos, F. G., Aguiar, E. V, Rosell, C. M., & Capriles, V. D. (2021). Potential of chickpea and psyllium in gluten-free breadmaking: Assessing bread's quality, sensory acceptability, and glycemic and satiety indexes. Food Hydrocolloids, 113, 106487. https://doi.org/10.1016/j.foodhyd.2020.106487
- Santos, F. G., & Capriles, V. D. (2021). Relationships between dough thermomechanical parameters and physical and sensory properties of gluten-free bread texture during storage. LWT-Food Science and Technology, 139, 110577. https://doi.org/10.1016/j.lwt.2020.110577
- Schierhorn, C. (2020). Cold snacks heat up. Food Technology, 74(2), 27–38.
- Sharima-Abdullah, N., Hassan, C. Z., Arifin, N., & Huda-Faujan, N. (2018). Physicochemical properties and consumer preference of imitation chicken nuggets produced from chickpea flour and textured vegetable protein. International Food Research Journal, 25(3), 1016–1025.
- Shevkani, K., Singh, N., Chen, Y., Kaur, A., & Yu, L. (2019). Pulse proteins: Secondary structure, functionality and applications. Journal of Food Science and Technology, 56, 2787–2798. https://doi.org/10.1007/s13197-019-03723-8
- Shi, J., Zheng, H., Gao, Y., Min, W., Li, H., Fang, L., …, & Liu, X. (2020). Patent no. CN111034811A. Retrieved from https://patents.google.com/patent/CN111034811A/en?q=chickpea&before=priority:20200101&after=priority:20150101&page=1
- Shi, W., Hou, T., Guo, D., & He, H. (2019). Evaluation of hypolipidemic peptide (Val-Phe-Val-Arg-Asn) virtual screened from chickpea peptides by pharmacophore model in high-fat diet-induced obese rat. Journal of Functional Foods, 54. https://doi.org/10.1016/j.jff.2019.01.001
- Sibian, M. S., Saxena, D. C., & Riar, C. S. (2016). Effect of pre and post germination parameters on the chemical characteristics of Bengal gram (Cicer arietinum). LWT - Food Science and Technology, 65, 783–790. https://doi.org/10.1016/j.lwt.2015.09.012
- Silvestre-De-León, R., Espinosa-Ramírez, J., Heredia-Olea, E., Pérez-Carrillo, E., & Serna-Saldívar, S. O. (2020). Biocatalytic degradation of proteins and starch of extruded whole chickpea flours. Food and Bioprocess Technology, 13(10), 1703–1716. https://doi.org/10.1007/s11947-020-02511-z
- Simsek, S., Herken, E. N., & Ovando-Martinez, M. (2016). Chemical composition, nutritional value and in vitro starch digestibility of roasted chickpeas. Journal of the Science of Food and Agriculture, 96(8), 2896–2905. https://doi.org/10.1002/jsfa.7461
- Singh, B., Rachna, Hussain, S. Z., & Sharma, S. (2015). Response surface analysis and process optimization of twin screw extrusion cooking of potato-based snacks. Journal of Food Processing and Preservation, 39(3), 270–281. https://doi.org/10.1111/jfpp.12230
- Siva, N., Thavarajah, P., & Thavarajah, D. (2020). Prebiotic carbohydrate concentrations of common bean and chickpea change during cooking, cooling, and reheating. Journal of Food Science, 85(4), 980–988. https://doi.org/10.1111/1750-3841.15066
- Sofi, S. A., Singh, J., Muzaffar, K., Majid, D., & Dar, N. (2020). Physicochemical characteristics of protein isolates from native and germinated chickpea cultivars and their noodle quality. International Journal of Gastronomy and Food Science, 22, 1878–450. https://doi.org/10.1016/j.ijgfs.2020.100258
- Spinelli, M. A., Singh, K., & Brand, R. (2019). De-oiling for plant-based protein extraction (Patent No. US20160309744A1). https://patents.google.com/patent/US20160309744?oq=Spinelli%2C+Michael+A.+Singh%2C+Krisan+Brand%2C+Reinhold+de-oiling
- Sumargo, F. (2016). Improving the utilization of dry edible beans in a ready-to-eat snack product by extrusion cooking. Dissertations, Theses, & Student Research in Food Science and Technology 67. University of Nebraska-Lincoln. DigitalCommons@University of Nebraska-Lincoln.
- Thompson, H. J. (2019). Improving human dietary choices through understanding of the tolerance and toxicity of pulse crop constituents. Current Opinion in Food Science, 30, 93–97. https://doi.org/10.1016/j.cofs.2019.01.001
- Tontul, İ., Kasimoglu, Z., Asik, S., Atbakan, T., & Topuz, A. (2018). Functional properties of chickpea protein isolates dried by refractance window drying. International Journal of Biological Macromolecules, 109, 1253–1259. https://doi.org/10.1016/j.ijbiomac.2017.11.135
- Turfani, V., Narducci, V., Durazzo, A., Galli, V., & Carcea, M. (2017). Technological, nutritional and functional properties of wheat bread enriched with lentil or carob flours. LWT - Food Science and Technology, 78, 361–366. https://doi.org/10.1016/j.lwt.2016.12.030
- USA Pulses. (2018). Production. USA dry pea, lentil & chickpea production. Retrieved from Processing information and technical manual website: https://www.usapulses.org/technical-manual/chapter-3-production/production
- Valdez-Flores, M., Germán-Báez, L. J., Gutiérrez-Dorado, R., Medina-Godoy, S., Norzagaray-Valenzuela, C., Hernández-Verdugo, S., Reyes-Moreno, C., & Valdez-Ortiz, A. (2016). Improving bioactivities of Jatropha curcas protein hydrolysates by optimizing with response surface methodology the extrusion cooking process. Industrial Crops and Products, 85, 353–360. https://doi.org/10.1016/j.indcrop.2015.12.084
- Vinoth Kumar, T., Lakshmanasenthil, S., Geetharamani, D., Marudhupandi, T., Suja, G., & Suganya, P. (2015). Fucoidan – A α-d-glucosidase inhibitor from Sargassum wightii with relevance to type 2 diabetes mellitus therapy. International Journal of Biological Macromolecules, 72, 1044–1047. https://doi.org/10.1016/j.ijbiomac.2014.10.013
- Wang, S., Nosworthy, M. G., House, J. D., Ai, Y., Hood-Niefer, S., & Nickerson, M. T. (2019). Effect of barrel temperature and feed moisture on the physical properties of chickpea–sorghum and chickpea–maize extrudates, and the functionality and nutritional value of their resultant flours—Part II. Cereal Chemistry, 96(4), 621–633. https://doi.org/10.1002/cche.10162
- Wang, S., Nosworthy, M. G., House, J. D., Niefer, S. H., & Nickerson, M. T. (2020). Effect of barrel temperature and feed moisture on protein quality in pre-cooked kabuli chickpea, sorghum, and maize flours. Food Science and Technology International, 26(3), 265–274. https://doi.org/10.1177/1082013219887635
- Wani, I. A., Gani, A., Tariq, A., Sharma, P., Masoodi, F. A., & Wani, H. M. (2016). Effect of roasting on physicochemical, functional and antioxidant properties of arrowhead (Sagittaria sagittifolia L.) flour. Food Chemistry, 197, 345–352. https://doi.org/10.1016/j.foodchem.2015.10.125
- WHO. (2016). Global report on diabetes. Retrieved from http://www.who.int/about/licensing/copyright_form/index.html
- Xiao, Y., Huang, L., Chen, Y., Zhang, S., Rui, X., & Dong, M. (2016). Comparative study of the effects of fermented and non-fermented chickpea flour addition on quality and antioxidant properties of wheat bread. CyTA - Journal of Food, 14(4), 621–631. https://doi.org/10.1080/19476337.2016.1188157
- Xu, M., Jin, Z., Lan, Y., Rao, J., & Chen, B. (2019). HS-SPME-GC-MS/olfactometry combined with chemometrics to assess the impact of germination on flavor attributes of chickpea, lentil, and yellow pea flours. Food Chemistry, 280, 83–95. https://doi.org/10.1016/j.foodchem.2018.12.048
- Xu, M., Jin, Z., Simsek, S., Hall, C., Rao, J., & Chen, B. (2019). Effect of germination on the chemical composition, thermal, pasting, and moisture sorption properties of flours from chickpea, lentil, and yellow pea. Food Chemistry, 295, 579–587. https://doi.org/10.1016/j.foodchem.2019.05.167
- Xu, Y., Cartier, A., Obielodan, M., Jordan, K., Hairston, T., Shannon, A., & Sismour, E. (2016). Nutritional and anti-nutritional composition, and in vitro protein digestibility of kabuli chickpea (Cicer arietinum L.) as affected by differential processing methods. Journal of Food Measurement and Characterization, 10(3), 625–633. https://doi.org/10.1007/s11694-016-9346-8
- Xu, Y., Galanopoulos, M., Sismour, E., Ren, S., Mersha, Z., Lynch, P., & Almutaimi, A. (2019). Effect of enzymatic hydrolysis using endo- and exo-proteases on secondary structure, functional, and antioxidant properties of chickpea protein hydrolysates. Journal of Food Measurement and Characterization, 14(1), 343–352. https://doi.org/10.1007/s11694-019-00296-0
- Yağci, S., & Evcı, T. (2017). Development of chickpea snack using instant controlled pressure drop process. Journal of Food Processing and Preservation, 41(3), e12958. https://doi.org/10.1111/jfpp.12958
- Yağcı, S., Altan, A., & Doğan, F. (2020). Effects of extrusion processing and gum content on physicochemical, microstructural and nutritional properties of fermented chickpea-based extrudates. LWT, 124, 109150. https://doi.org/10.1016/j.lwt.2020.109150
- Yağcı, S., & Evci, T. (2015). Effect of instant controlled pressure drop process on some physicochemical and nutritional properties of snacks produced from chickpea and wheat. International Journal of Food Science & Technology, 50(8), 1901–1910. https://doi.org/10.1111/ijfs.12843
- Yamsaengsung, R., Berghofer, E., & Schoenlechner, R. (2012). Physical properties and sensory acceptability of cookies made from chickpea addition to white wheat or whole wheat flour compared to gluten-free amaranth or buckwheat flour. International Journal of Food Science and Technology, 47(10), 2221–2227. https://doi.org/10.1111/j.1365-2621.2012.03092.x
- Yust, M. D. M., Millán-Linares, M. D. C., Alcaide-Hidalgo, J. M., Millán, F., & Pedroche, J. (2013). Hydrolysis of chickpea proteins with flavourzyme immobilized on glyoxyl-agarose gels improves functional properties. Food Science and Technology International = Ciencia y Tecnologia de Los Alimentos Internacional, 19(3), 217–223. https://doi.org/10.1177/1082013212442197
- Zhang, Y., Su, D., He, J., Dai, Z., Asad, R., Ou, S., & Zeng, X. (2017). Effects of ciceritol from chickpeas on human colonic microflora and the production of short chain fatty acids by in vitro fermentation. LWT - Food Science and Technology, 79, 294–299. https://doi.org/10.1016/j.lwt.2017.01.040
- Zhao, J., Liu, X., Bai, X., & Wang, F. (2019). Production of biscuits by substitution with different ratios of yellow pea flour. Grain & Oil Science and Technology, 2(4), 91–96. https://doi.org/10.1016/j.gaost.2019.09.004
10.1016/j.gaost.2019.09.004 Google Scholar