The applications of conventional and innovative mechanical technologies to tailor structural and functional features of dietary fibers from plant wastes: A review
Goly Fayaz
Soils Science and Agri-Food Engineering Department, Laval University, Québec, Canada
Institute of Nutrition and Functional Foods, Laval University, Québec, Canada
Contribution: Writing - original draft (lead), Writing - review & editing (supporting)
Search for more papers by this authorYasamin Soleimanian
Soils Science and Agri-Food Engineering Department, Laval University, Québec, Canada
Institute of Nutrition and Functional Foods, Laval University, Québec, Canada
Contribution: Writing - original draft (supporting), Writing - review & editing (lead)
Search for more papers by this authorMmadi Mhamadi
Soils Science and Agri-Food Engineering Department, Laval University, Québec, Canada
Institute of Nutrition and Functional Foods, Laval University, Québec, Canada
Search for more papers by this authorSylvie L. Turgeon
Institute of Nutrition and Functional Foods, Laval University, Québec, Canada
Food Science Department, Laval University, Québec, Canada
Search for more papers by this authorCorresponding Author
Seddik Khalloufi
Soils Science and Agri-Food Engineering Department, Laval University, Québec, Canada
Institute of Nutrition and Functional Foods, Laval University, Québec, Canada
Correspondence
Seddik Khalloufi, Soils Science and Agri-Food Engineering Department, Laval University, 2425 Rue de l'Agriculture, Québec, QC G1 V 0A6, Canada.
Email: [email protected]
Contribution: Conceptualization (lead), Supervision (lead), Writing - review & editing (supporting)
Search for more papers by this authorGoly Fayaz
Soils Science and Agri-Food Engineering Department, Laval University, Québec, Canada
Institute of Nutrition and Functional Foods, Laval University, Québec, Canada
Contribution: Writing - original draft (lead), Writing - review & editing (supporting)
Search for more papers by this authorYasamin Soleimanian
Soils Science and Agri-Food Engineering Department, Laval University, Québec, Canada
Institute of Nutrition and Functional Foods, Laval University, Québec, Canada
Contribution: Writing - original draft (supporting), Writing - review & editing (lead)
Search for more papers by this authorMmadi Mhamadi
Soils Science and Agri-Food Engineering Department, Laval University, Québec, Canada
Institute of Nutrition and Functional Foods, Laval University, Québec, Canada
Search for more papers by this authorSylvie L. Turgeon
Institute of Nutrition and Functional Foods, Laval University, Québec, Canada
Food Science Department, Laval University, Québec, Canada
Search for more papers by this authorCorresponding Author
Seddik Khalloufi
Soils Science and Agri-Food Engineering Department, Laval University, Québec, Canada
Institute of Nutrition and Functional Foods, Laval University, Québec, Canada
Correspondence
Seddik Khalloufi, Soils Science and Agri-Food Engineering Department, Laval University, 2425 Rue de l'Agriculture, Québec, QC G1 V 0A6, Canada.
Email: [email protected]
Contribution: Conceptualization (lead), Supervision (lead), Writing - review & editing (supporting)
Search for more papers by this authorAbstract
Plant food wastes generated through the food chain have attracted increasing attention over the last few years not only due to critical environmental and economic issues but also as an available source of valuable components such as dietary fibers. However, the exploitation of plant waste remains limited due to the lack of appropriate processing technologies to recover and tailor fiber functionalities. Among the different technologies developed for waste valorization, mechanical techniques were suggested to be a promising and sustainable strategy to extract fibers with improved functionalities. In this context, the present review describes different mechanical technologies (conventional and innovative) with potential applications to produce micro/nanofibers from various plant residues, highlighting the operating principle as well as the main advantages and pitfalls. The impact on the structural, technological, and functional properties of fibrous materials is comprehensively discussed. The extent of fiber modification not only highly depended on the technology and operation conditions used but also on fiber composition and the application of posttreatments such as dehydration. Other variables, including economic and environmental issues such as equipment cost, energy demand, and eco-friendly features, are also reviewed. The outputs of this review can be used by both the industrial sector and academia to select a suitable combination of fiber and processing technology for designing novel foods with improved functionalities that fulfill market trends and consumer needs.
REFERENCES
- Abdul Khalil, H. P. S., Davoudpour, Y., Islam, M. N., Mustapha, A., Sudesh, K., Dungani, R., & Jawaid, M. (2014). Production and modification of nanofibrillated cellulose using various mechanical processes: A review. In Carbohydrate Polymers (Vol. 99, pp. 649–665). Elsevier. https://doi.org/10.1016/j.carbpol.2013.08.069
- Abe, K., Iwamoto, S., & Yano, H. (2007). Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules, 8(10), 3276–3278. https://doi.org/10.1021/bm700624p
- Agoda-Tandjawa, G., Mazoyer, J., Wallecan, J., & Langendorff, V. (2020). Effects of sucrose addition on the rheological properties of citrus peel fiber suspensions before and after drying. Food Hydrocolloids, 101, 105473. https://doi.org/10.1016/j.foodhyd.2019.105473
- Ahmad, B., Stoyanov, S., Pelan, E., Stride, E., & Edirisinghe, M. (2013). Electrospinning of ethyl cellulose fibers with glass and steel needle configurations. Food Research International, 54(2), 1761–1772. https://doi.org/10.1016/j.foodres.2013.09.021
- Ajila, C. M., Brar, S. K., Verma, M., & Prasada Rao, U. J. S. (2012). Sustainable solutions for agro processing waste management: An overview. In Environmental Protection Strategies for Sustainable Development (pp. 65–109). https://doi.org/10.1007/978-94-007-1591-2_3
10.1007/978-94-007-1591-2_3 Google Scholar
- Alemdar, A., & Sain, M. (2008). Isolation and characterization of nanofibers from agricultural residues - Wheat straw and soy hulls. Bioresource Technology, 99(6), 1664–1671. https://doi.org/10.1016/j.biortech.2007.04.029
- Altan, A., Aytac, Z., & Uyar, T. (2018). Carvacrol-loaded electrospun fibrous films from zein and poly(lactic acid) for active food packaging. Food Hydrocolloids, 81, 48–59. https://doi.org/10.1016/j.foodhyd.2018.02.028
- Anderson, J. W., Baird, P., Davis, R. H., Ferreri, S., Knudtson, M., Koraym, A., Waters, V., & Williams, C. L. (2009). Health benefits of dietary fiber. In Nutrition Reviews (Vol. 67, Issue 4, pp. 188–205). Oxford Academic. https://doi.org/10.1111/j.1753-4887.2009.00189.x
- Arkoun, M., Daigle, F., Heuzey, M. C., & Ajji, A. (2017). Mechanism of action of electrospun chitosan-based nanofibers against meat spoilage and pathogenic bacteria. Molecules, 22(4), 585. https://doi.org/10.3390/molecules22040585
- Arslan, M., Rakha, A., Xiaobo, Z., & Mahmood, M. A. (2019). Complimenting gluten free bakery products with dietary fiber: Opportunities and constraints. Trends in Food Science and Technology, 83, 194–202. https://doi.org/10.1016/j.tifs.2018.11.011
- Augusto, P. E. D., Ibarz, A., & Cristianini, M. (2012). Effect of high pressure homogenization (HPH) on the rheological properties of a fruit juice serum model. Journal of Food Engineering, 111(2), 474–477. https://doi.org/10.1016/j.jfoodeng.2012.02.033
- Augusto, P. E. D., Tribst, A. A. L., & Cristianini, M. (2018). High Hydrostatic Pressure and High-Pressure Homogenization Processing of Fruit Juices. In Fruit Juices: Extraction, Composition, Quality and Analysis (pp. 393–421). Elsevier Inc. https://doi.org/10.1016/B978-0-12-802230-6.00020-5
10.1016/B978-0-12-802230-6.00020-5 Google Scholar
- Avellar, B. K., & Glasser, W. G. (1998). Steam-assisted biomass fractionation. I. Process considerations and economic evaluation. Biomass and Bioenergy, 14(3), 205–218. https://doi.org/10.1016/S0961-9534(97)10043-5
- Aydogdu, A., Sumnu, G., & Sahin, S. (2018). Effects of addition of different fibers on rheological characteristics of cake batter and quality of cakes. Journal of Food Science and Technology, 55(2), 667–677. https://doi.org/10.1007/s13197-017-2976-y
- Bae, H. S., Haider, A., Selim, K. M. K., Kang, D. Y., Kim, E. J., & Kang, I. K. (2013). Fabrication of highly porous PMMA electrospun fibers and their application in the removal of phenol and iodine. Journal of Polymer Research, 20(7), 1–7. https://doi.org/10.1007/s10965-013-0158-9
- Bae, W., Lee, S. H., Yoo, S. H., & Lee, S. (2014). Utilization of a maltotetraose-producing amylase as a whole wheat bread improver: Dough rheology and baking performance. Journal of Food Science, 79(8), 2–7. https://doi.org/10.1111/1750-3841.12538
- Baheti, V., Abbasi, R., & Militky, J. (2012). Ball milling of jute fiber wastes to prepare nanocellulose. World Journal of Engineering, 9(1), 45–50. https://doi.org/10.1260/1708-5284.9.1.45
- Balasubramaniam, V. M. B., Martínez-Monteagudo, S. I., & Gupta, R. (2015). Principles and application of high pressure-based technologies in the food industry. In Annual Review of Food Science and Technology (Vol. 6, pp. 435–462). Annual Reviews Inc. https://doi.org/10.1146/annurev-food-022814-015539
- Bandyopadhyay-Ghosh, S., Ghosh, S. B., & Sain, M. (2015). The use of biobased nanofibers in composites. In Biofiber Reinforcements in Composite Materials (pp. 571–647). Elsevier Inc. https://doi.org/10.1533/9781782421276.5.571
10.1533/9781782421276.5.571 Google Scholar
- Beaumont, M., König, J., Opietnik, M., Potthast, A., & Rosenau, T. (2017). Drying of a cellulose II gel: effect of physical modification and redispersibility in water. Cellulose, 24(3), 1199–1209. https://doi.org/10.1007/s10570-016-1166-9
- Begum, Y. A., & Deka, S. C. (2019). Effect of processing on structural, thermal, and physicochemical properties of dietary fiber of culinary banana bracts. Journal of Food Processing and Preservation, 43(12), e14256. https://doi.org/10.1111/jfpp.14256
- Belmiro, R. H., Tribst, A. A. L., & Cristianini, M. (2018). Application of high-pressure homogenization on gums. In Journal of the Science of Food and Agriculture (Vol. 98, Issue 6, pp. 2060–2069). John Wiley and Sons Ltd. https://doi.org/10.1002/jsfa.8695
- Bengtsson, H., & Tornberg, E. (2011). Physicochemical characterization of fruit and vegetable fiber suspensions. I: Effect of homogenization. Journal of Texture Studies, 42(4), 268–280. https://doi.org/10.1111/j.1745-4603.2010.00275.x
- Benítez, V., Mollá, E., Martín-Cabrejas, M. A., Aguilera, Y., López-Andréu, F. J., & Esteban, R. M. (2012). Onion (Allium cepa L.) byproducts as source of dietary fiber: Physicochemical properties and effect on serum lipid levels in high-fat fed rats. European Food Research and Technology, 234(4), 617–625. https://doi.org/10.1007/S00217-012-1674-2/TABLES/7
- Berglund, L., Breedveld, L., & Oksman, K. (2020). Toward eco-efficient production of natural nanofibers from industrial residue: Eco-design and quality assessment. Journal of Cleaner Production, 255, 120274. https://doi.org/10.1016/j.jclepro.2020.120274
- Berglund, L., Noël, M., Aitomäki, Y., Öman, T., & Oksman, K. (2016). Production potential of cellulose nanofibers from industrial residues: Efficiency and nanofiber characteristics. Industrial Crops and Products, 92, 84–92. https://doi.org/10.1016/j.indcrop.2016.08.003
- Bordes, C., Garcia, F., Snabre, P., & Frances, C. (2002). On-line characterization of particle size during an ultrafine wet grinding process. Powder Technology, 128(2–3), 218–228. https://doi.org/10.1016/S0032-5910(02)00190-0
- Calligaris, S., Plazzotta, S., Bot, F., Grasselli, S., Malchiodi, A., & Anese, M. (2016). Nanoemulsion preparation by combining high-pressure homogenization and high-power ultrasound at low energy densities. Food Research International, 83, 25–30. https://doi.org/10.1016/j.foodres.2016.01.033
- Cara, C., Ruiz, E., Ballesteros, M., Manzanares, P., Negro, M. J., & Castro, E. (2008). Production of fuel ethanol from steam-explosion pretreated olive tree pruning. Fuel, 87(6), 692–700. https://doi.org/10.1016/j.fuel.2007.05.008
- Castoldi, R., Correa, V. G., de Morais, G. R., de Souza, C. G. M., Bracht, A., Peralta, R. A., Peralta-Muniz Moreira, R. F., & Peralta, R. M. (2017). Liquid nitrogen pretreatment of eucalyptus sawdust and rice hull for enhanced enzymatic saccharification. Bioresource Technology, 224, 648–655. https://doi.org/10.1016/j.biortech.2016.11.099
- Castro, A., Bergenståhl, B., & Tornberg, E. (2012). Parsnip (Pastinaca sativa L.): Dietary fiber composition and physicochemical characterization of its homogenized suspensions. Food Research International, 48(2), 598–608. https://doi.org/10.1016/j.foodres.2012.05.023
- Chakraborty, A., Sain, M., & Kortschot, M. (2005). Cellulose microfibrils: A novel method of preparation using high shear refining and cryocrushing. Holzforschung, 59(1), 102–107. https://doi.org/10.1515/HF.2005.016
- Chamayou, A., & Dodds, J. A. (2007). Air Jet Milling. In Handbook of Powder Technology (Vol. 12, pp. 421–435). Elsevier Science B.V. https://doi.org/10.1016/S0167-3785(07)12011-X
- Chau, C. F., Wen, Y. L., & Wang, Y. T. (2006). Effects of micronisation on the characteristics and physicochemical properties of insoluble fibers. Journal of the Science of Food and Agriculture, 86(14), 2380–2386. https://doi.org/10.1002/jsfa.2628
- Chau, C. F., Wang, Y. T., & Wen, Y. L. (2007). Different micronization methods significantly improve the functionality of carrot insoluble fiber. Food Chemistry, 100(4), 1402–1408. https://doi.org/10.1016/j.foodchem.2005.11.034
- Chemat, F., Zill-E-Huma, & Khan, M. K. (2011). Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrasonics Sonochemistry, 18(4), 813–835. https://doi.org/10.1016/j.ultsonch.2010.11.023
- Chen, G., Wang, L., Zhang, F., Li, C., & Kan, J. (2015). Effect of superfine grinding on physicochemical properties of mulberry leaf powder. Transactions of the Chinese Society of Agricultural Engineering, 31(24), 307–314. https://doi.org/10.11975/j.issn.1002-6819.2015.24.046
- Chen, H., Zhao, C., Li, J., Hussain, S., Yan, S., & Wang, Q. (2018). Effects of extrusion on structural and physicochemical properties of soluble dietary fiber from nodes of lotus root. LWT, 93, 204–211. https://doi.org/10.1016/j.lwt.2018.03.004
- Chen, Jialun, Gao, D., Yang, L., & Gao, Y. (2013). Effect of microfluidization process on the functional properties of insoluble dietary fiber. Food Research International, 54(2), 1821–1827. https://doi.org/10.1016/j.foodres.2013.09.025
- Chen, Jun, Liang, R. H., Liu, W., Liu, C. M., Li, T., Tu, Z. C., & Wan, J. (2012). Degradation of high-methoxyl pectin by dynamic high pressure microfluidization and its mechanism. Food Hydrocolloids, 28(1), 121–129. https://doi.org/10.1016/j.foodhyd.2011.12.018
- Chen, P., Yu, H., Liu, Y., Chen, W., Wang, X., & Ouyang, M. (2013). Concentration effects on the isolation and dynamic rheological behavior of cellulose nanofibers via ultrasonic processing. Cellulose, 20(1), 149–157. https://doi.org/10.1007/s10570-012-9829-7
- Chen, Y., Ye, R., Yin, L., & Zhang, N. (2014). Novel blasting extrusion processing improved the physicochemical properties of soluble dietary fiber from soybean residue and in vivo evaluation. Journal of Food Engineering, 120(1), 1–8. https://doi.org/10.1016/j.jfoodeng.2013.07.011
- Cheng, Q., Wang, S., & Han, Q. (2010). Novel process for isolating fibrils from cellulose fibers by high-intensity ultrasonication. II. fibril characterization. Journal of Applied Polymer Science, 115(5), 2756–2762. https://doi.org/10.1002/app.30160
- Cherian, B. M., Pothan, L. A., Nguyen-Chung, T., Mennig, G., Kottaisamy, M., & Thomas, S. (2008). A novel method for the synthesis of cellulose nanofibril whiskers from banana fibers and characterization. Journal of Agricultural and Food Chemistry, 56(14), 5617–5627. https://doi.org/10.1021/jf8003674
- Chu, J., Zhao, H., Lu, Z., Lu, F., Bie, X., & Zhang, C. (2019). Improved physicochemical and functional properties of dietary fiber from millet bran fermented by Bacillus natto. Food Chemistry, 294, 79–86. https://doi.org/10.1016/J.FOODCHEM.2019.05.035
- Chitrakar, B., Zhang, M., Zhang, X., & Devahastin, S. (2020). Bioactive dietary fiber powder from asparagus leaf byproduct: Effect of low-temperature ball milling on physico-chemical, functional and microstructural characteristics. Powder Technology, 366, 275–282. https://doi.org/10.1016/j.powtec.2020.02.068
- Colletti, A. C., Delgado, J. F., Cabezas, D. M., Wagner, J. R., & Porfiri, M. C. (2020). Soybean Hull Insoluble Polysaccharides: Improvements of Its Physicochemical Properties Through High Pressure Homogenization. Food Biophysics, 15(2), 173–187. https://doi.org/10.1007/s11483-019-09613-y
- Comuzzo, P., & Calligaris, S. (2019). Potential Applications of High Pressure Homogenization in Winemaking: A Review. Beverages, 5(3), 56. https://doi.org/10.3390/beverages5030056
- Cooper, C. J., Mohanty, A. K., & Misra, M. (2018). Electrospinning Process and Structure Relationship of Biobased Poly(butylene succinate) for Nanoporous Fibers. ACS Omega, 3(5), 5547–5557. https://doi.org/10.1021/acsomega.8b00332
- Cui, L., Liu, Z., Si, C., Hui, L., Kang, N., & Zhao, T. (2012). Influence of steam explosion pretreatment on the composition and structure of wheat straw. BioResources, 7(3), 4202–4213. https://doi.org/10.15376/biores.7.3.4202-4213
- Daou, C., & Zhang, H. (2012). Study on Functional Properties of Physically Modified Dietary Fibers Derived from Defatted Rice Bran. Journal of Agricultural Science, 4(9), 85–97. https://doi.org/10.5539/jas.v4n9p85
10.5539/jas.v4n9p85 Google Scholar
- Daou, C., & Zhang, H. (2014). Functional and physiological properties of total, soluble, and insoluble dietary fibers derived from defatted rice bran. Journal of Food Science and Technology, 51(12), 3878–3885. https://doi.org/10.1007/s13197-013-0925-y
- DelaPeñaArmada, R., Villanueva-Suárez, M. J., & Mateos-Aparicio, I. (2020). High hydrostatic pressure processing enhances pectin solubilization on apple bypby-product improving techno-functional properties. European Food Research and Technology, 246(8), 1691–1702. https://doi.org/10.1007/s00217-020-03524-w
- Devarayan, K., Hanaoka, H., Hachisu, M., Araki, J., Ohguchi, M., Behera, B. K., & Ohkawa, K. (2013). Direct electrospinning of cellulose-chitosan composite nanofibers. Macromolecular Materials and Engineering, 298(10), 1059–1064. https://doi.org/10.1002/mame.201200337
- Dolatowski, Z. J., Stadnik, J., & Stasiak, D. (2007). Application of ultrasound in food technolog. In ACTA Acta Sci. Pol., Technol. Aliment (Vol. 6, Issue 3).
- Doshi, J., & Reneker, D. H. (1995). Electrospinning process and applications of electrospun fibers. Journal of Electrostatics, 35(2–3), 151–160. https://doi.org/10.1016/0304-3886(95)00041-8
- Dumay, E., Chevalier-Lucia, D., Picart-Palmade, L., Benzaria, A., Gràcia-Julià, A., & Blayo, C. (2013). Technological aspects and potential applications of (ultra) high-pressure homogenization. In Trends in Food Science and Technology (Vol. 31, Issue 1, pp. 13–26). Elsevier. https://doi.org/10.1016/j.tifs.2012.03.005
- Duque, A., Manzanares, P., & Ballesteros, M. (2017). Extrusion as a pretreatment for lignocellulosic biomass: Fundamentals and applications. In Renewable Energy (Vol. 114, pp. 1427–1441). Elsevier Ltd. https://doi.org/10.1016/j.renene.2017.06.050
- Dzenis, Y. (2004). Spinning continuous fibers for nanotechnology. American Association for the Advancement of Science, 304(5679), 1917–1919. https://doi.org/10.1126/science.1099074
- Earnshaw, R. (1996). High pressure food processing. Nutrition & Food Science, 96(2), 8–11. https://doi.org/10.1108/00346659610108966
10.1108/00346659610108966 Google Scholar
- Elleuch, M., Bedigian, D., Roiseux, O., Besbes, S., Blecker, C., & Attia, H. (2011). Dietary fiber and fiber-rich byproducts of food processing: Characterization, technological functionality and commercial applications: A review. In Food Chemistry (Vol. 124, Issue 2, pp. 411–421). Elsevier. https://doi.org/10.1016/j.foodchem.2010.06.077
- Eriksen, O., Syverud, K., & Gregersen, O. (2008). The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper. Nordic Pulp and Paper Research Journal, 23(3), 299–304. https://doi.org/10.3183/npprj-2008-23-03-p299-304
- Eslava-Zomeño, C., Quiles, A., & Hernando, I. (2016). Designing a Clean Label Sponge Cake with Reduced Fat Content. Journal of Food Science, 81(10), C2352–C2359. https://doi.org/10.1111/1750-3841.13446
- Espinosa, E., Rol, F., Bras, J., & Rodríguez, A. (2019). Production of lignocellulose nanofibers from wheat straw by different fibrillation methods. Comparison of its viability in the cardboard recycling process. Journal of Cleaner Production, 239, 118083. https://doi.org/10.1016/j.jclepro.2019.118083
- Fayaz, G., Plazzotta, S., Calligaris, S., Manzocco, L., & Nicoli, M. C. (2019). Impact of high pressure homogenization on physical properties, extraction yield and biopolymer structure of soybean okara. LWT, 113. https://doi.org/10.1016/j.lwt.2019.108324
- Ferarsa, S., Zhang, W., Moulai-Mostefa, N., Ding, L., Jaffrin, M. Y., & Grimi, N. (2018). Recovery of anthocyanins and other phenolic compounds from purple eggplant peels and pulps using ultrasonic-assisted extraction. Food and Bioproducts Processing, 109, 19–28. https://doi.org/10.1016/j.fbp.2018.02.006
- Floury, J., Desrumaux, A., Axelos, M. A. V., & Legrand, J. (2002). Degradation of methylcellulose during ultrahigh pressure homogenization. Food Hydrocolloids, 16(1), 47–53. https://doi.org/10.1016/S0268-005X(01)00039-X
- Food and Agriculture Organization (FAO). (2014). Definitional Framework of Food Losses and Waste; FAO. www.fao.org/publications
- Food and Drug Administration (FDA). (2018). Scientific Evaluation of the Evidence on the Beneficial Physiological Effects of Isolated or Synthetic Non-Digestible Carbohydrates Submitted as a Citizen Petition (21 CFR 10.30): Guidance for Industry. FAO. www.fao.org/publications
- Formhals, A. (1930). Process and Apparatus for Preparing Artificial Threads.
- Frenot, A., & Chronakis, I. S. (2003). Polymer nanofibers assembled by electrospinning. In Current Opinion in Colloid and Interface Science (Vol. 8, Issue 1, pp. 64–75). Elsevier BV. https://doi.org/10.1016/S1359-0294(03)00004-9
- Frenot, A., Henriksson, M. W., & Walkenström, P. (2007). Electrospinning of cellulose-based nanofibers. Journal of Applied Polymer Science, 103(3), 1473–1482. https://doi.org/10.1002/app.24912
- Frey, M. W. (2008). Electrospinning cellulose and cellulose derivatives. Polymer Reviews, 48(2), 378–391. https://doi.org/10.1080/15583720802022281
- Gan, J., Huang, Z., Yu, Q., Peng, G., Chen, Y., Xie, J., Nie, S., & Xie, M. (2020). Microwave assisted extraction with three modifications on structural and functional properties of soluble dietary fibers from grapefruit peel. Food Hydrocolloids, 101, 105549. https://doi.org/10.1016/J.FOODHYD.2019.105549
- Gan, J., Xie, L., Peng, G., Xie, J., Chen, Y., & Yu, Q. (2021). Systematic review on modification methods of dietary fiber. Food Hydrocolloids, 119, 106872. https://doi.org/10.1016/J.FOODHYD.2021.106872
- Ganesan, P., Karthivashan, G., Park, S. Y., Kim, J., & Choi, D. K. (2018). Microfluidization trends in the development of nanodelivery systems and applications in chronic disease treatments. In International Journal of Nanomedicine (Vol. 13, pp. 6109–6121). Dove Medical Press Ltd. https://doi.org/10.2147/IJN.S178077
- Gao, W., Chen, F., Zhang, L., & Meng, Q. (2020). Effects of superfine grinding on asparagus pomace. Part I: Changes on physicochemical and functional properties. Journal of Food Science, 85(6), 1827–1833. https://doi.org/10.1111/1750-3841.15168
- Ge, Q., Mao, J. W., Cai, C., Huang, J., Zhou, Y., Fang, J., Sun, Y., & Sha, R. (2017). Effects of twin-screw extrusion on physicochemical properties and functional properties of bamboo shoots dietary fiber. Journal of Biobased Materials and Bioenergy, 11(4), 385–390. https://doi.org/10.1166/jbmb.2017.1685
- Gorrasi, G., & Sorrentino, A. (2015). Mechanical milling as a technology to produce structural and functional bionanocomposites. In Green Chemistry (Vol. 17, Issue 5, pp. 2610–2625). Royal Society of Chemistry. https://doi.org/10.1039/c5gc00029g
- Gómez, M., & Martinez, M. M. (2018). Fruit and vegetable byproducts as novel ingredients to improve the nutritional quality of baked goods. Critical Reviews in Food Science and Nutrition, 58(13), 2119–2135. https://doi.org/10.1080/10408398.2017.1305946
- Greenwell, T. (2011). The Ultra Mixing and Processing Facility (UMPF) chose CPS Disc Centrifuge to aid fluid processing research at the nanoscale. www.analytik.co.uk
- Gu, Y. M., Kim, S., Sung, D., Sang, B. I., & Lee, J. H. (2019). Feasibility of continuous pretreatment of corn stover: A comparison of three commercially available continuous pulverizing devices. Energies, 12(8), 1422. https://doi.org/10.3390/en12081422
- Gu, M., Fang, H., Gao, Y., Su, T., Niu, Y., & Yu, L. (Lucy). (2020). Characterization of enzymatic modified soluble dietary fiber from tomato peels with high release of lycopene. Food Hydrocolloids, 99, 105321. https://doi.org/10.1016/J.FOODHYD.2019.105321
- Guo, Y., Liu, W., Wu, B., Wu, P., Duan, Y., Yang, Q., & Ma, H. (2018). Modification of garlic skin dietary fiber with twin-screw extrusion process and in vivo evaluation of Pb binding. Food Chemistry, 268, 550–557. https://doi.org/10.1016/j.foodchem.2018.06.047
- Haider, S., Al-Zeghayer, Y., Ahmed Ali, F. A., Haider, A., Mahmood, A., Al-Masry, W. A., Imran, M., & Aijaz, M. O. (2013). Highly aligned narrow diameter chitosan electrospun nanofibers. Journal of Polymer Research, 20(4), 1–11. https://doi.org/10.1007/s10965-013-0105-9
- Härdelin, L., Thunberg, J., Perzon, E., Westman, G., Walkenström, P., & Gatenholm, P. (2012). Electrospinning of cellulose nanofibers from ionic liquids: The effect of different cosolvents. Journal of Applied Polymer Science, 125(3), 1901–1909. https://doi.org/10.1002/app.36323
- Harvey, D. (2014). Evaluation of a novel rotor-stator design for emulsification and the impact on chemical reactions. https://livrepository.liverpool.ac.uk/18813
- Harvey, D. H. S., Mothersdale, T., Shchukin, D., & Kowalski, A. J. (2019). Plant Fiber Processing Using the Controlled Deformation Dynamic Mixer. Chemical Engineering and Technology, 42(8), 1566–1573. https://doi.org/10.1002/ceat.201800718
- He, S., Li, J., He, Q., Jian, H., Zhang, Y., Wang, J., & Sun, H. (2018). Physicochemical and antioxidant properties of hard white winter wheat (Triticum aestivum L.) bran superfine powder produced by eccentric vibratory milling. Powder Technology, 325, 126–133. https://doi.org/10.1016/j.powtec.2017.10.054
- Hietala, M., & Oksman, K. (2014). Technologies for Separation of Cellulose Nanofibers. In Handbook of Green Materials (pp. 53–71). https://doi.org/10.1142/9789814566469_0005
- Hoeger, I. C., Nair, S. S., Ragauskas, A. J., Deng, Y., Rojas, O. J., & Zhu, J. Y. (2013). Mechanical deconstruction of lignocellulose cell walls and their enzymatic saccharification. Cellulose, 20(2), 807–818. https://doi.org/10.1007/s10570-013-9867-9
- Homayoni, H., Ravandi, S. A. H., & Valizadeh, M. (2009). Electrospinning of chitosan nanofibers: Processing optimization. Carbohydrate Polymers, 77(3), 656–661. https://doi.org/10.1016/j.carbpol.2009.02.008
- Hua, X., Xu, S., Wang, M., Chen, Y., Yang, H., & Yang, R. (2017). Effects of high-speed homogenization and high-pressure homogenization on structure of tomato residue fibers. Food Chemistry, 232, 443–449. https://doi.org/10.1016/j.foodchem.2017.04.003
- Huang, C. C., Chen, Y. F., & Wang, C. C. R. (2010). Effects of micronization on the physico-chemical properties of peels of three root and tuber crops. Journal of the Science of Food and Agriculture, 90(5), 759–763. https://doi.org/10.1002/jsfa.3879
- Huang, L., Ding, X., Zhao, Y., Li, Y., & Ma, H. (2018). Modification of insoluble dietary fiber from garlic straw with ultrasonic treatment. Journal of Food Processing and Preservation, 42(1), 1–8. https://doi.org/10.1111/jfpp.13399
- Huang, L., Zhang, W., Cheng, J., & Lu, Z. (2019). Antioxidant and physicochemical properties of soluble dietary fiber from garlic straw as treated by energy-gathered ultrasound. International Journal of Food Properties, 22(1), 678–688. https://doi.org/10.1080/10942912.2019.1600544
- Huang, Y. L., & Ma, Y. S. (2016). The effect of extrusion processing on the physiochemical properties of extruded orange pomace. Food Chemistry, 192, 363–369. https://doi.org/10.1016/j.foodchem.2015.07.039
- Huang, Z. M., Zhang, Y. Z., Kotaki, M., & Ramakrishna, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 63(15), 2223–2253. https://doi.org/10.1016/S0266-3538(03)00178-7
- Huerta, R. R. (2020). Nanofiber production from agricultural straw biomass using pressurized fluids and ultrasound processing for tissue engineering scaffolds. https://doi.org/10.7939/R3-TT6Y-Y033
- Hussain, S., Jõudu, I., & Bhat, R. (2020). Dietary Fiber from Underutilized Plant Resources—A Positive Approach for Valorization of Fruit and Vegetable Wastes. Sustainability, 12(13), 5401. https://doi.org/10.3390/su12135401
- Hussain, S., Li, J., Jin, W., Yan, S., & Wang, Q. (2018). Effect of micronisation on dietary fiber content and hydration properties of lotus node powder fractions. International Journal of Food Science and Technology, 53(3), 590–598. https://doi.org/10.1111/ijfs.13632
- Islam, M. T., Alam, M. M., Patrucco, A., Montarsolo, A., & Zoccola, M. (2014). Preparation of nanocellulose: A review. In AATCC Journal of Research (Vol. 1, Issue 5, pp. 17–23). American Association of Textile Chemists and Colorists. https://doi.org/10.14504/ajr.1.5.3
- Iuga, M., & Mironeasa, S. (2020). Potential of grape byproducts as functional ingredients in baked goods and pasta. Comprehensive Reviews in Food Science and Food Safety, 19(5), 2473–2505. https://doi.org/10.1111/1541-4337.12597
- Iwamoto, S., Nakagaito, A. N., & Yano, H. (2007). Nanofibrillation of pulp fibers for the processing of transparent nanocomposites. Applied Physics A: Materials Science and Processing, 89(2), 461–466. https://doi.org/10.1007/s00339-007-4175-6
- Iwamoto, S., Nakagaito, A. N., Yano, H., & Nogi, M. (2005). Optically transparent composites reinforced with plant fiber-based nanofibers. Applied Physics A: Materials Science and Processing, 81(6), 1109–1112. https://doi.org/10.1007/s00339-005-3316-z
- Iwassa, I. J., Piai, J. F., & Bolanho, B. C. (2019). Fiber concentrates from asparagus byproducts: Microstructure, composition, functional and antioxidant properties. Ciencia e Agrotecnologia, 43, 1981–1829. https://doi.org/10.1590/1413-7054201943007319
- Janardhnan, S., & Sain, M. M. (2006). Isolation of cellulose microfibrils–an enzymatic approach. Bioresources, 1(2), 176–188.
- Jia, M., Chen, J., Liu, X., Xie, M., Nie, S., Chen, Y., Xie, J., & Yu, Q. (2019). Structural characteristics and functional properties of soluble dietary fiber from defatted rice bran obtained through Trichoderma viride fermentation. Food Hydrocolloids, 94, 468–474. https://doi.org/10.1016/J.FOODHYD.2019.03.047
- Jiang, G., Ramachandraiah, K., Wu, Z., Li, S., & Eun, J. B. (2020). Impact of ball-milling time on the physical properties, bioactive compounds, and structural characteristics of onion peel powder. Food Bioscience, 36, 100630. https://doi.org/10.1016/j.fbio.2020.100630
- Jing, Y., & Chi, Y. J. (2013). Effects of twin-screw extrusion on soluble dietary fiber and physicochemical properties of soybean residue. Food Chemistry, 138(2–3), 884–889. https://doi.org/10.1016/j.foodchem.2012.12.003
- Jonoobi, M., Harun, J., Mathew, A. P., Hussein, M. Z. B., & Oksman, K. (2010). Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose, 17(2), 299–307. https://doi.org/10.1007/s10570-009-9387-9
- Jonoobi, M., Oladi, R., Davoudpour, Y., Oksman, K., Dufresne, A., Hamzeh, Y., & Davoodi, R. (2015). Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. In Cellulose (Vol. 22, Issue 2, pp. 935–969). Kluwer Academic Publishers. https://doi.org/10.1007/s10570-015-0551-0
- Kalia, S., Boufi, S., Celli, A., & Kango, S. (2014). Nanofibrillated cellulose: Surface modification and potential applications. In Colloid and Polymer Science (Vol. 292, Issue 1, pp. 5–31). Springer Verlag. https://doi.org/10.1007/s00396-013-3112-9
- Kampeerapappun, P. (2012). Preparation Characterization and Antimicrobial Activity of Electrospun Nanofibers from Cotton Waste Fibers. In Chiang Mai J. Sci (Vol. 39, Issue 4). http://it.science.cmu.ac.th/ejournal/
- Kang, T., & Paulapuro, H. (2006). Effect of external fibrillation on paper strength. Pulp and Paper Canada, 107(7–8).
- Kargarzadeh, H., Ioelovich, M., Ahmad, I., Thomas, S., & Dufresne, A. (2017). Methods for Extraction of Nanocellulose from Various Sources. In Handbook of Nanocellulose and Cellulose Nanocomposites (pp. 1–49). Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/9783527689972.ch1
10.1002/9783527689972.ch1 Google Scholar
- Kaschuk, J. J., & Frollini, E. (2018). Effects of average molar weight, crystallinity, and hemicellulose content on the enzymatic hydrolysis of sisal pulp, filter paper, and microcrystalline cellulose. Industrial Crops and Products, 115, 280–289. https://doi.org/10.1016/j.indcrop.2018.02.011
- Kaya, E., Tuncel, N. B., & Yılmaz Tuncel, N. (2017). The effect of ultrasound on some properties of pulse hulls. Journal of Food Science and Technology, 54(9), 2779–2788. https://doi.org/10.1007/s13197-017-2714-5
- Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., & Dorris, A. (2011). Nanocelluloses: A new family of nature-based materials. In Angewandte Chemie - International Edition (Vol. 50, Issue 24, pp. 5438–5466). John Wiley & Sons, Ltd. https://doi.org/10.1002/anie.201001273
- Lavoine, N., Desloges, I., Dufresne, A., & Bras, J. (2012). Microfibrillated cellulose - Its barrier properties and applications in cellulosic materials: A review. In Carbohydrate Polymers (Vol. 90, Issue 2, pp. 735–764). Elsevier. https://doi.org/10.1016/j.carbpol.2012.05.026
- Lee, K. Y., Park, K. H., Ahn, J. B., & Lee, H. G. (2014). Effect of different chemical modifications on the physicochemical properties of fiber-enriched polysaccharides isolated from wholegrain rice and buckwheat. Food Science and Biotechnology, 23(5), 1469–1475. https://doi.org/10.1007/S10068-014-0201-6
- Lee, K. Y., Park, K. H., & Lee, H. G. (2016). Effect of modified dietary fiber extracted from wholegrain wheat on the physicochemical and cake properties. Food Science and Biotechnology, 25(2), 477–482. https://doi.org/10.1007/S10068-016-0066-Y
- Li, B., Yang, W., Nie, Y., Kang, F., Goff, H. D., & Cui, S. W. (2019). Effect of steam explosion on dietary fiber, polysaccharide, protein and physicochemical properties of okara. Food Hydrocolloids, 94, 48–56. https://doi.org/10.1016/j.foodhyd.2019.02.042
- Li, D., Wang, Q., Huang, F., & Wei, Q. (2019). Electrospun nanofibers for enzyme immobilization. In Electrospinning: Nanofabrication and Applications (pp. 765–781). Elsevier. https://doi.org/10.1016/B978-0-323-51270-1.00026-1
- Lin, D., Long, X., Huang, Y., Yang, Y., Wu, Z., Chen, H., Zhang, Q., Wu, D., Qin, W., & Tu, Z. (2020). Effects of microbial fermentation and microwave treatment on the composition, structural characteristics, and functional properties of modified okara dietary fiber. LWT, 123, 109059. https://doi.org/10.1016/J.LWT.2020.109059
- Liang, X., Ran, J., Sun, J., Wang, T., Jiao, Z., He, H., & Zhu, M. (2018). Steam-explosion-modified optimization of soluble dietary fiber extraction from apple pomace using response surface methodology. CYTA - Journal of Food, 16(1), 20–26. https://doi.org/10.1080/19476337.2017.1333158
- Liu, Q., Lu, Y., Aguedo, M., Jacquet, N., Ouyang, C., He, W., Yan, C., Bai, W., Guo, R., Goffin, D., Song, J., & Richel, A. (2017). Isolation of High-Purity Cellulose Nanofibers from Wheat Straw through the Combined Environmentally Friendly Methods of Steam Explosion, Microwave-Assisted Hydrolysis, and Microfluidization. ACS Sustainable Chemistry and Engineering, 5(7), 6183–6191. https://doi.org/10.1021/acssuschemeng.7b01108
- López-Marcos, M. C., Bailina, C., Viuda-Martos, M., Pérez-Alvarez, J. A., & Fernández-López, J. (2015). Properties of Dietary Fibers from Agroindustrial Coproducts as Source for Fiber-Enriched Foods. Food and Bioprocess Technology, 8(12), 2400–2408. https://doi.org/10.1007/s11947-015-1591-z
- Luo, C. J., Stoyanov, S. D., Stride, E., Pelan, E., & Edirisinghe, M. (2012). Electrospinning versus fiber production methods: From specifics to technological convergence. Chemical Society Reviews, 41(13), 4708–4735. https://doi.org/10.1039/c2cs35083a
- Luo, X., Wang, Q., Fang, D., Zhuang, W., Chen, C., Jiang, W., & Zheng, Y. (2018). Modification of insoluble dietary fibers from bamboo shoot shell: Structural characterization and functional properties. International Journal of Biological Macromolecules, 120, 1461–1467. https://doi.org/10.1016/j.ijbiomac.2018.09.149
- Ma, M., & Mu, T. (2016). Modification of deoiled cumin dietary fiber with laccase and cellulase under high hydrostatic pressure. Carbohydrate Polymers, 136, 87–94. https://doi.org/10.1016/j.carbpol.2015.09.030
- Martínez-Monteagudo, S. I., Yan, B., & Balasubramaniam, V. M. (2017). Engineering Process Characterization of High-Pressure Homogenization—from Laboratory to Industrial Scale. In Food Engineering Reviews (Vol. 9, Issue 3, pp. 143–169). Springer New York LLC. https://doi.org/10.1007/s12393-016-9151-5
- Mateos-Aparicio, I., Mateos-Peinado, C., Jiménez-Escrig, A., & Rupérez, P. (2010). Multifunctional antioxidant activity of polysaccharide fractions from the soybean byproduct okara. Carbohydrate Polymers, 82(2), 245–250. https://doi.org/10.1016/j.carbpol.2010.04.020
- Meng, X., Liu, F., Xiao, Y., Cao, J., Wang, M., & Duan, X. (2019). Alterations in physicochemical and functional properties of buckwheat straw insoluble dietary fiber by alkaline hydrogen peroxide treatment. Food Chemistry: X, 3, 100029. https://doi.org/10.1016/J.FOCHX.2019.100029
- Mert, I. D. (2020). The applications of microfluidization in cereals and cereal-based products: An overview. In Critical Reviews in Food Science and Nutrition (Vol. 60, Issue 6, pp. 1007–1024). Taylor and Francis Inc. https://doi.org/10.1080/10408398.2018.1555134
- Midoux, N., Hošek, P., Pailleres, L., & Authelin, J. R. (1999). Micronization of pharmaceutical substances in a spiral jet mill. Powder Technology, 104(2), 113–120. https://doi.org/10.1016/S0032-5910(99)00052-2
- Moreira, J. B., Morais, M. G. de, Morais, E. G. de, Vaz, B. da S., & Costa, J. A. V. (2018). Electrospun Polymeric Nanofibers in Food Packaging. In Impact of Nanoscience in the Food Industry (pp. 387–417). Elsevier Inc. https://doi.org/10.1016/B978-0-12-811441-4.00014-5
10.1016/B978-0-12-811441-4.00014-5 Google Scholar
- Muller, F., Polke, R., & Schadel, G. (1996). Spiral jet mills: hold up and scale up. International Journal of Mineral Processing, 44–45, 315–326. https://doi.org/10.1016/0301-7516(95)00042-9
10.1016/0301-7516(95)00042-9 Google Scholar
- Nakagaito, A. N., & Yano, H. (2004). The effect of morphological changes from pulp fiber toward nanoscale fibrillated cellulose on the mechanical properties of high-strength plant fiber-based composites. Applied Physics A: Materials Science and Processing, 78(4), 547–552. https://doi.org/10.1007/s00339-003-2453-5
- Nechyporchuk, O., Belgacem, M. N., & Bras, J. (2016). Production of cellulose nanofibrils: A review of recent advances. In Industrial Crops and Products (Vol. 93, pp. 2–25). Elsevier B.V. https://doi.org/10.1016/j.indcrop.2016.02.016
- Nezarati, R. M., Eifert, M. B., & Cosgriff-Hernandez, E. (2013). Effects of humidity and solution viscosity on electrospun fiber morphology. Tissue Engineering - Part C: Methods, 19(10), 810–819. https://doi.org/10.1089/ten.tec.2012.0671
- Niu, Y., Li, N., Xia, Q., Hou, Y., & Xu, G. (2018). Comparisons of three modifications on structural, rheological and functional properties of soluble dietary fibers from tomato peels. LWT, 88, 56–63. https://doi.org/10.1016/J.LWT.2017.10.003
- O'Shea, Norah, Arendt, E. K., & Gallagher, E. (2012). Dietary fiber and phytochemical characteristics of fruit and vegetable byproducts and their recent applications as novel ingredients in food products. Innovative Food Science and Emerging Technologies, 16, 1–10. https://doi.org/10.1016/j.ifset.2012.06.002
- Pääkko, M., Ankerfors, M., Kosonen, H., Nykänen, A., Ahola, S., Österberg, M., Ruokolainen, J., Laine, J., Larsson, P. T., Ikkala, O., & Lindström, T. (2007). Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules, 8(6), 1934–1941. https://doi.org/10.1021/bm061215p
- Palaniandy, S., Kadir, N. A., & Jaafar, M. (2009). Limestone is added to the filler grade through an ultrafine grinding process in a jet mill for use in the plastic industry. Minerals Engineering, 22(7–8), 695–703. https://doi.org/10.1016/j.mineng.2009.02.010
- Papargyropoulou, E., Lozano, R., K. Steinberger, J., Wright, N., & Ujang, Z. Bin. (2014). The food waste hierarchy as a framework for the management of food surplus and food waste. Journal of Cleaner Production, 76, 106–115. https://doi.org/10.1016/j.jclepro.2014.04.020
- Park, K. H., Lee, K. Y., & Lee, H. G. (2013). Chemical composition and physicochemical properties of barley dietary fiber by chemical modification. International Journal of Biological Macromolecules, 60, 360–365. https://doi.org/10.1016/J.IJBIOMAC.2013.06.024
- Pfaltzgraff, L. A., Cooper, E. C., Budarin, V., & Clark, J. H. (2013). Food waste biomass: a resource for high-value chemicals. Green Chemistry, 15(2), 307–314.
- Phat, C., Li, H., Lee, D. U., Moon, B., Yoo, Y. B., & Lee, C. (2015). Characterization of Hericium erinaceum powders prepared by conventional roll milling and jet milling. Journal of Food Engineering, 145, 19–24. https://doi.org/10.1016/j.jfoodeng.2014.08.001
- Piras, C. C., Fernández-Prieto, S., & De Borggraeve, W. M. (2019). Ball milling: A green technology for the preparation and functionalisation of nanocellulose derivatives. In Nanoscale Advances (Vol. 1, Issue 3, pp. 937–947). Royal Society of Chemistry. https://doi.org/10.1039/c8na00238j
- Plazzotta, S., Cottes, M., Simeoni, P., & Manzocco, L. (2020). Evaluating the environmental and economic impact of fruit and vegetable waste valorisation: The lettuce waste study-case. Journal of Cleaner Production, 262, 121435. https://doi.org/10.1016/j.jclepro.2020.121435
- Pötschke, P., Brünig, H., Janke, A., Fischer, D., & Jehnichen, D. (2005). Orientation of multiwalled carbon nanotubes in composites with polycarbonate by melt spinning. Polymer, 46(23), 10355–10363. https://doi.org/10.1016/j.polymer.2005.07.106
- Qi, H., Sui, X., Yuan, J., Wei, Y., & Zhang, L. (2010). Electrospinning of cellulose-based fibers from the NaOH/urea aqueous system. Macromolecular Materials and Engineering, 295(8), 695–700. https://doi.org/10.1002/mame.201000018
- Qu, M., Liu, Y., Zhang, G., Xue, S. J., Fan, H., Wang, Y., & Yu, S. (2017). Identification and characterization of soybean dreg soluble dietary fiber by combination of extrusion pretreatment and enzymatic modification. Food Quality and Safety, 1(2), 153–160. https://doi.org/10.1093/fqsafe/fyx014
- Quan, S. L., Kang, S. G., & Chin, I. J. (2010). Characterization of cellulose fibers electrospun using ionic liquid. Cellulose, 17(2), 223–230. https://doi.org/10.1007/s10570-009-9386-x
- Ralet, M. C., Thibault, J. F., & Valle, G. Della. (1991). Solubilization of sugar-beet cell wall polysaccharides by extrusion-cooking. Lebensmittel-Wissenschaft Und -Technologie, 24(2), 107–112. https://www.researchgate.net/publication/232091823
- Ramanathan, G. (2019). Process optimization of jet mills for metallurgical powder production. In A thesis submitted in partial fulfillment of the requirements for the degree of master of appplied science in the faculty of graduate and postdoctoral studies. The University of British Columbia.
- Raso, J., & Barbosa-Cánovas, G. V. (2003). Nonthermal Preservation of Foods Using Combined Processing Techniques. In Critical Reviews in Food Science and Nutrition (Vol. 43, Issue 3, pp. 265–285). Taylor & Francis Group. https://doi.org/10.1080/10408690390826527
- Rezaei, A., Nasirpour, A., & Fathi, M. (2015). Application of cellulosic nanofibers in food science using electrospinning and its potential risk. Comprehensive Reviews in Food Science and Food Safety, 14(3), 269–284. https://doi.org/10.1111/1541-4337.12128
- Rosa-Sibakov, N., Sibakov, J., Lahtinen, P., & Poutanen, K. (2015). Wet grinding and microfluidization of wheat bran preparations: Improvement of dispersion stability by structural disintegration. Journal of Cereal Science, 64, 1–10. https://doi.org/10.1016/j.jcs.2015.04.002
- Saleem, I. Y., & Smyth, H. D. C. (2010). Micronization of a soft material: Air-jet and microball milling. AAPS PharmSciTech, 11(4), 1642–1649. https://doi.org/10.1208/s12249-010-9542-5
- Schultz, J. M., Hsiao, B. S., & Samon, J. M. (2000). Structural development during the early stages of polymer melt spinning by in situ synchrotron X-ray techniques. Polymer, 41(25), 8887–8895. https://doi.org/10.1016/S0032-3861(00)00232-9
- Sehaqui, H., Salajková, M., Zhou, Q., & Berglund, L. A. (2010). Mechanical performance tailoring of tough ultrahigh porosity foams prepared from cellulose i nanofiber suspensions. Soft Matter, 6(8), 1824–1832. https://doi.org/10.1039/b927505c
- Sharma, S. K., Bansal, S., Mangal, M., Dixit, A. K., Gupta, R. K., & Mangal, A. K. (2016). Utilization of food processing byproducts as dietary, functional, and novel fiber: A review. Critical Reviews in Food Science and Nutrition, 56(10), 1647–1661. https://doi.org/10.1080/10408398.2013.794327
- Shelar, G. A., & Gaikwad, S. T. (2019). Extrusion in food processing: An overview. The Pharma Innovation Journal, 562(2), 562–568. www.thepharmajournal.com
- Shen, M., Ge, Y., Kang, Z., Quan, Z., Wang, J., Xiao, J., Wang, W., & Cao, L. (2019). Yield and Physicochemical Properties of Soluble Dietary Fiber Extracted from Untreated and Steam Explosion-Treated Black Soybean Hull. Journal of Chemistry, 2019. https://doi.org/10.1155/2019/9736479
- Sheng, K., Qu, H., Liu, C., Yan, L., You, J., Shui, S., & Zheng, L. (2017). A comparative assess of high hydrostatic pressure and superfine grinding on physicochemical and antioxidant properties of grape pomace. International Journal of Food Science and Technology, 52(9), 2106–2114. https://doi.org/10.1111/ijfs.13489
- Shi, X., Zhou, W., Ma, D., Ma, Q., Bridges, D., Ma, Y., & Hu, A. (2015). Electrospinning of Nanofibers and Their Applications for Energy Devices. In Journal of Nanomaterials (Vol. 2015). Hindawi Publishing Corporation. https://doi.org/10.1155/2015/140716
- Shukla, S., Brinley, E., Cho, H. J., & Seal, S. (2005). Electrospinning of hydroxypropyl cellulose fibers and their application in synthesis of nano and submicron tin oxide fibers. Polymer, 46(26), 12130–12145. https://doi.org/10.1016/j.polymer.2005.10.070
- Siró, I., & Plackett, D. (2010). Microfibrillated cellulose and new nanocomposite materials: A review. In Cellulose (Vol. 17, Issue 3, pp. 459–494). Springer Netherlands. https://doi.org/10.1007/s10570-010-9405-y
- Son, W. K., Youk, J. H., & Park, W. H. (2006). Antimicrobial cellulose acetate nanofibers containing silver nanoparticles. Carbohydrate Polymers, 65(4), 430–434. https://doi.org/10.1016/j.carbpol.2006.01.037
- Song, Y., Su, W., & Mu, Y. C. (2018). Modification of bamboo shoot dietary fiber by extrusion-cellulase technology and its properties. International Journal of Food Properties. 21 (1), 1219–1232. https://doi.org/10.1080/10942912.2018.1479715
- Soleimanian, Y., Sanou, I., Turgeon, S. L., Canizares, D., & Khalloufi, S. (2021). Natural plant fibers obtained from agricultural residue used as an ingredient in food matrices or packaging materials: a review. Comprehensive Reviews in Food Science and Food Safety. DOI: 10.1111/1541-4337.12875
- Spence, K. L., Venditti, R. A., Rojas, O. J., Habibi, Y., & Pawlak, J. J. (2011). A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose, 18(4), 1097–1111. https://doi.org/10.1007/s10570-011-9533-z
- Speroni, C. S., Bender, A. B. B., Stiebe, J., Ballus, C. A., Ávila, P. F., Goldbeck, R., Morisso, F. D. P., Silva, L. P. da, & Emanuelli, T. (2020). Granulometric fractionation and micronization: A process for increasing soluble dietary fiber content and improving technological and functional properties of olive pomace. LWT, 130, 109526. https://doi.org/10.1016/j.lwt.2020.109526
- Su, D., Zhu, X., Wang, Y., Li, D., & Wang, L. (2019). Effects of high-pressure homogenization on physical and thermal properties of citrus fiber. LWT, 116, 108573. https://doi.org/10.1016/j.lwt.2019.108573
- Subbiah, T., Bhat, G. S., Tock, R. W., Parameswaran, S., & Ramkumar, S. S. (2005). Electrospinning of nanofibers. Journal of Applied Polymer Science, 96(2), 557–569. https://doi.org/10.1002/app.21481
- Sun, C., Wu, X., Chen, X., Li, X., Zheng, Z., & Jiang, S. (2020). Production and characterization of okara dietary fiber produced by fermentation with Monascus anka. Food Chemistry, 316, 126243. https://doi.org/10.1016/J.FOODCHEM.2020.126243
- Sun, J., Zhang, Z., Xiao, F., Wei, Q., & Jing, Z. (2018). Ultrasound-assisted alkali extraction of insoluble dietary fiber from soybean residues. IOP Conference Series: Materials Science and Engineering, 392(5), 052005. https://doi.org/10.1088/1757-899X/392/5/052005
10.1088/1757-899X/392/5/052005 Google Scholar
- Sun, K., & Li, Z. (2011). Preparation, properties and applications of chitosan-based nanofibers fabricated by electrospinning. EXPRESS Polymer Letters, 5(4), 342–361. https://doi.org/10.3144/expresspolymlett.2011.34
- Sun, R. C., Sun, X. F., & Ma, X. H. (2002). Effect of ultrasound on the structural and physiochemical properties of organosolv soluble hemicelluloses from wheat straw. Ultrasonics Sonochemistry, 9(2), 95–101. https://doi.org/10.1016/S1350-4177(01)00102-X
- Surip, S. N., Aziz, F. M. A., Bonnia, N. N., Sekak, K. A., & Zakaria, M. N. (2017). Process parameters and surface morphology of pineapple leaf electrospun nanofibers (PALF). AIP Conference Proceedings, 1885(1), 020269. https://doi.org/10.1063/1.5002463
10.1063/1.5002463 Google Scholar
- Sutka, A., Kukle, S., Gravitis, J., Milašius, R., & Malašauskiene, J. (2013). Nanofiber electrospinning poly(vinyl alcohol) and cellulose composite mats obtained by use of a cylindrical electrode. Advances in Materials Science and Engineering, 2013. https://doi.org/10.1155/2013/932636
- Tan, S. H., Inai, R., Kotaki, M., & Ramakrishna, S. (2005). Systematic parameter study for ultrafine fiber fabrication via the electrospinning process. Polymer, 46(16), 6128–6134. https://doi.org/10.1016/j.polymer.2005.05.068
- Tanahashi, M. (1990). Characterization and Degradation Mechanisms of Wood C.omponents by Steam Explosion and Utilization of Exploded Wood. Wood Research, 77, 49–170.
- Taniguchi, T., & Okamura, K. (1999). New films produced from microfibrillated natural fibers. Polymer International, 47(3), 291–294. https://onlinelibrary.wiley.com/doi/abs/10.1002/(SICI)1097-0126(199811)47:3%3C291::AID-PI11%3E3.0. CO;2-1
- Tanpichai, S., Witayakran, S., & Boonmahitthisud, A. (2019). Study on structural and thermal properties of cellulose microfibers isolated from pineapple leaves using steam explosion. Journal of Environmental Chemical Engineering, 7(1), 102836. https://doi.org/10.1016/j.jece.2018.102836
- Tejada-Ortigoza, V., Garcia-Amezquita, L. E., Serna-Saldívar, S. O., Martín-Belloso, O., & Welti-Chanes, J. (2018). High Hydrostatic Pressure and Mild Heat Treatments for the Modification of Orange Peel Dietary Fiber: Effects on Hygroscopic Properties and Functionality. Food and Bioprocess Technology, 11(1), 110–121. https://doi.org/10.1007/s11947-017-1998-9
- Tejada-Ortigoza, V., García-Amezquita, L. E., Serna-Saldívar, S. O., & Welti-Chanes, J. (2017). The dietary fiber profile of fruit peels and functionality modifications induced by high hydrostatic pressure treatments. Food Science and Technology International, 23(5), 396–402. https://doi.org/10.1177/1082013217694301
- Toepfl, S., Mathys, A., Heinz, V., & Knorr, D. (2006). Review: Potential of high hydrostatic pressure and pulsed electric fields for energy efficient and environmentally friendly food processing. Food Reviews International, 22(4), 405–423. https://doi.org/10.1080/87559120600865164
- Trigo, J. P., Alexandre, E. M. C., Saraiva, J. A., & Pintado, M. E. (2020). High value-added compounds from fruit and vegetable byproducts–Characterization, bioactivities, and application in the development of novel food products. Critical Reviews in Food Science and Nutrition, 60(8), 1388–1416. https://doi.org/10.1080/10408398.2019.1572588
- Tu, Z., Chen, L., Wang, H., Ruan, C., Zhang, L., & Kou, Y. (2014). Effect of fermentation and dynamic high pressure microfluidization on dietary fiber of soybean residue. Journal of Food Science and Technology, 51(11), 3285–3292. https://doi.org/10.1007/s13197-012-0838-1
- Turbak, A. F., Snyder, F. W., Sandberg, K. R., & Shelton, W. (1983). MICROFIBRILLATED CELLULOSE.
- Uetani, K., & Yano, H. (2011). Nanofibrillation of wood pulp using a high-speed blender. Biomacromolecules, 12(2), 348–353. https://doi.org/10.1021/bm101103p
- Vega-Lugo, A. C., & Lim, L. T. (2009). Controlled release of allyl isothiocyanate using soy protein and poly(lactic acid) electrospun fibers. Food Research International, 42(8), 933–940. https://doi.org/10.1016/j.foodres.2009.05.005
- Velásquez-Cock, J., Gañán, P., Gómez H., C., Posada, P., Castro, C., Dufresne, A., & Zuluaga, R. (2018). Improved redispersibility of cellulose nanofibrils in water using maltodextrin as a green, easily removable and nontoxic additive. Food Hydrocolloids, 79, 30–39. https://doi.org/10.1016/j.foodhyd.2017.12.024
- Veleirinho, B., & Lopes-da-Silva, J. A. (2009). Application of electrospun poly(ethylene terephthalate) nanofiber mat to apple juice clarification. Process Biochemistry, 44(3), 353–356. https://doi.org/10.1016/j.procbio.2008.11.008
- Vignon, M. R., Garcia-Jaldon, C., & Dupeyre, D. (1995). Steam explosion of woody hemp chènevotte. International Journal of Biological Macromolecules, 17(6), 395–404. https://doi.org/10.1016/0141-8130(96)81852-6
- Wang, B., & Sain, M. (2007). Dispersion of soybean stock-based nanofiber in a plastic matrix. Polymer International, 56(4), 538–546. https://doi.org/10.1002/pi.2167
- Wang, B., Sain, M., & Oksman, K. (2007). Study of structural morphology of hemp fiber from the micro to the nanoscale. Applied Composite Materials, 14(2), 89–103. https://doi.org/10.1007/s10443-006-9032-9
- Wang, C., Li, L., Sun, X., Qin, W., Wu, D., Hu, B., Raheem, D., Yang, W., Dong, H., Vasanthan, T., & Zhang, Q. (2019). High-speed shearing of soybean flour suspension disintegrates the component cell layers and modifies the hydration properties of okara fibers. LWT, 116, 108505. https://doi.org/10.1016/j.lwt.2019.108505
- Wang, C., Song, R., Wei, S., Wang, W., Li, F., Tang, X., & Li, N. (2020). Modification of insoluble dietary fiber from ginger residue through enzymatic treatments to improve its bioactive properties. LWT, 125, 109220. https://doi.org/10.1016/J.LWT.2020.109220
- Wang, K., Chen, J., Sun, S. N., & Sun, R. C. (2015). Steam Explosion. In Pretreatment of Biomass: Processes and Technologies (pp. 75–104). Elsevier Inc. https://doi.org/10.1016/B978-0-12-800080-9.00006-2
10.1016/B978-0-12-800080-9.00006-2 Google Scholar
- Wang, K., Li, M., Wang, Y., Liu, Z., & Ni, Y. (2021). Effects of extraction methods on the structural characteristics and functional properties of dietary fiber extracted from kiwifruit (Actinidia deliciosa). Food Hydrocolloids, 110, 106162. https://doi.org/10.1016/J.FOODHYD.2020.106162
- Wang, L., Xu, H., Yuan, F., Fan, R., & Gao, Y. (2015). Preparation and physicochemical properties of soluble dietary fiber from orange peel assisted by steam explosion and dilute acid soaking. Food Chemistry, 185, 90–98. https://doi.org/10.1016/j.foodchem.2015.03.112
- Wang, S., & Cheng, Q. (2009). A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication, part 1: Process optimization. Journal of Applied Polymer Science, 113(2), 1270–1275. https://doi.org/10.1002/app.30072
- Wang, Tao, Sun, X., Raddatz, J., & Chen, G. (2013). Effects of microfluidization on microstructure and physicochemical properties of corn bran. Journal of Cereal Science, 58(2), 355–361. https://doi.org/10.1016/j.jcs.2013.07.003
- Wang, Tao, Sun, X., Zhou, Z., & Chen, G. (2012). Effects of microfluidization process on physicochemical properties of wheat bran. Food Research International, 48(2), 742–747. https://doi.org/10.1016/j.foodres.2012.06.015
- Wang, Tianlin, Liang, X., Ran, J., Sun, J., Jiao, Z., & Mo, H. (2017). Response surface methodology for optimization of soluble dietary fiber extraction from sweet potato residue modified by steam explosion. International Journal of Food Science and Technology, 52(3), 741–747. https://doi.org/10.1111/ijfs.13329
- Wang, X. X., Yu, G. F., Zhang, J., Yu, M., Ramakrishna, S., & Long, Y. Z. (2021). Conductive polymer ultrafine fibers by electrospinning: Preparation, physical properties and applications. In Progress in Materials Science (Vol. 115, p. 100704). Elsevier Ltd. https://doi.org/10.1016/j.pmatsci.2020.100704
- Wang, Z., Yan, L., Ning, T., Wang, X., Li, R., & Zhang, H. (2020). Increasing soluble dietary fiber content and antioxidant activity of wheat bran through twin-screw extrusion pretreatment. Preparative Biochemistry and Biotechnology, 50(9), 954–960. https://doi.org/10.1080/10826068.2020.1777424
- Wen, P., Zong, M. H., Linhardt, R. J., Feng, K., & Wu, H. (2017). Electrospinning: A novel nanoencapsulation approach for bioactive compounds. In Trends in Food Science and Technology (Vol. 70, pp. 56–68). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2017.10.009
- Wen, Y., Niu, M., Zhang, B., Zhao, S., & Xiong, S. (2017). Structural characteristics and functional properties of rice bran dietary fiber modified by enzymatic and enzyme-micronization treatments. LWT, 75, 344–351. https://doi.org/10.1016/J.LWT.2016.09.012
- Westenbroek, A. P. H. (2000). Extrusion Pulping of Natural Fibers Determination, Implementation and Verification of Constitutive Equations required for Modeling. The Netherlands: Westenbroek, Wageningen.
- Wu, H., Xiao, D., Lu, J., Jiao, C., Li, S., Lei, Y., Liu, D., Wang, J., Zhang, Z., Liu, Y., Shen, G., & Li, S. (2020). Effect of high-pressure homogenization on microstructure and properties of pomelo peel flour film-forming dispersions and their resultant films. Food Hydrocolloids, 102, 105628. https://doi.org/10.1016/j.foodhyd.2019.105628
- Xie, Fan, Li, M., Lan, X., Zhang, W., Gong, S., Wu, J., & Wang, Z. (2017). Modification of dietary fibers from purple-fleshed potatoes (Heimeiren) with high hydrostatic pressure and high pressure homogenization processing: A comparative study. Innovative Food Science and Emerging Technologies, 42, 157–164. https://doi.org/10.1016/j.ifset.2017.05.012
- Xie, Fengying, Zhao, T., Wan, H., Li, M., Sun, L., Wang, Z., & Zhang, S. (2019). Structural and Physicochemical Characteristics of Rice Bran Dietary Fiber by Cellulase and High-Pressure Homogenization. Applied Sciences, 9(7), 1270. https://doi.org/10.3390/app9071270
- Xue, Z., Ma, Q., Guo, Q., Santhanam, R. K., Gao, X., Chen, Z., Wang, C., & Chen, H. (2019). Physicochemical and functional properties of extruded dietary fiber from mushroom Lentinula edodes residues. Food Bioscience, 32, 100452. https://doi.org/10.1016/j.fbio.2019.100452
- Yaldagard, M., Mortazavi, A., & Tabatabaie, F. (2008). The principles of ultra high pressure technology and its application in food processing/preservation: A review of microbiological and quality aspects. African Journal of Biotechnology, 7(16), 2739–2767. http://www.academicjournals.org/AJB
- Yan, L., Li, T., Liu, C., & Zheng, L. (2019). Effects of high hydrostatic pressure and superfine grinding treatment on physicochemical/functional properties of pear pomace and chemical composition of its soluble dietary fiber. LWT, 107, 171–177. https://doi.org/10.1016/j.lwt.2019.03.019
- Yang, B., Wu, Q., Song, X., Yang, Q., & Kan, J. (2019). Physicochemical properties and bioactive function of Japanese grape (Hovenia dulcis) pomace insoluble dietary fiber modified by ball milling and complex enzyme treatment. International Journal of Food Science and Technology, 54(7), 2363–2373. https://doi.org/10.1111/ijfs.14134
- Yang, M., Wu, L., Cao, C., Wang, S., & Zhang, D. (2019). Improved function of bamboo shoot fiber by high-speed shear dispersing combined with enzyme treatment. International Journal of Food Science and Technology, 54(3), 844–853. https://doi.org/10.1111/ijfs.14004
- Yang, W., Feng, Y., He, H., & Yang, Z. (2018). Environmentally friendly extraction of cellulose nanofibers from steam-explosion pretreated sugar beet pulp. Materials, 11(7), 1160. https://doi.org/10.3390/ma11071160
- Yao, Z. C., Chang, M. W., Ahmad, Z., & Li, J. S. (2016). Encapsulation of rose hip seed oil into fibrous zein films for ambient and on demand food preservation via coaxial electrospinning. Journal of Food Engineering, 191, 115–123. https://doi.org/10.1016/j.jfoodeng.2016.07.012
- Ye, F., Tao, B., Liu, J., Zou, Y., & Zhao, G. (2016). Effect of micronization on the physicochemical properties of insoluble dietary fiber from citrus (Citrus junos Sieb. ex Tanaka) pomace. Food Science and Technology International, 22(3), 246–255. https://doi.org/10.1177/1082013215593394
- Yordanov, D. G., & Angelova, G. V. (2010). High pressure processing for food preservation. In Biotechnology and Biotechnological Equipment (Vol. 24, Issue 3, pp. 1940–1945). Taylor & Francis. https://doi.org/10.2478/V10133-010-0057-8
- Zhang, F., Yi, W., Cao, J., He, K., Liu, Y., & Bai, X. (2020). Microstructure characteristics of tea seed dietary fiber and its effect on cholesterol, glucose and nitrite ion adsorption capacities in vitro: a comparison study among different modifications. International Journal of Food Science and Technology, 55(4), 1781–1791. https://doi.org/10.1111/ijfs.14465
- Zhang, J., Xu, S., & Li, W. (2012). High shear mixers: A review of typical applications and studies on power draw, flow pattern, energy dissipation and transfer properties. In Chemical Engineering and Processing: Process Intensification (Vols. 57–58, pp. 25–41). Elsevier. https://doi.org/10.1016/j.cep.2012.04.004
- Zhang, M., Bai, X., & Zhang, Z. (2011). The extrusion process improves the functionality of soluble dietary fiber in oat bran. Journal of Cereal Science, 54(1), 98–103. https://doi.org/10.1016/J.JCS.2011.04.001
- Zhang, Y., Liao, J., & Qi, J. (2020). Functional and structural properties of dietary fiber from citrus peel affected by the alkali combined with high-speed homogenization treatment. LWT, 128, 109397. https://doi.org/10.1016/j.lwt.2020.109397
- Zhang, Y., Qi, J., Zeng, W., Huang, Y., & Yang, X. (2020). Properties of dietary fiber from citrus obtained through alkaline hydrogen peroxide treatment and homogenization treatment. Food Chemistry, 311, 125873. https://doi.org/10.1016/J.FOODCHEM.2019.125873
- Zhao, L. M., Shi, L. E., Zhang, Z. L., Chen, J. M., Shi, D. D., Yang, J., & Tang, Z. X. (2011). Preparation and application of chitosan nanoparticles and nanofibers. In Brazilian Journal of Chemical Engineering (Vol. 28, Issue 3, pp. 353–362). Assoc. Brasiliera de Eng. Quimica/Braz. Soc. Chem. Eng. https://doi.org/10.1590/S0104-66322011000300001
- Zhao, Y., Wu, X., Wang, Y., Jing, R., & Yue, F. (2017). Comparing Physicochemical Properties of Hawthorn Superfine and Fine Powders. Journal of Food Processing and Preservation, 41(2), e12834. https://doi.org/10.1111/jfpp.12834
- Zheng, Y., & Li, Y. (2018). Physicochemical and functional properties of coconut (Cocos nucifera L) cake dietary fibers: Effects of cellulase hydrolysis, acid treatment and particle size distribution. Food Chemistry, 257, 135–142. https://doi.org/10.1016/J.FOODCHEM.2018.03.012
- Zheng, Y., Li, Y., & Tian, H. (2020). Effects of carboxymethylation, acidic treatment, hydroxypropylation and heating combined with enzymatic hydrolysis on structural and physicochemical properties of palm kernel expeller dietary fiber. LWT, 133, 109909. https://doi.org/10.1016/J.LWT.2020.109909
- Zhu, F., Du, B., & Xu, B. (2015). Superfine grinding improves functional properties and antioxidant capacities of bran dietary fiber from Qingke (hull-less barley) grown in Qinghai-Tibet Plateau, China. Journal of Cereal Science, 65, 43–47. https://doi.org/10.1016/j.jcs.2015.06.006
- Zhu, F. M., Du, B., & Li, J. (2014). Effect of ultrafine grinding on physicochemical and antioxidant properties of dietary fiber from wine grape pomace. Food Science and Technology International, 20(1), 55–62. https://doi.org/10.1177/1082013212469619
- Zhu, K. X., Huang, S., Peng, W., Qian, H. F., & Zhou, H. M. (2010). Effect of ultrafine grinding on hydration and antioxidant properties of wheat bran dietary fiber. Food Research International, 43(4), 943–948. https://doi.org/10.1016/j.foodres.2010.01.005
- Zhu, L., Zaarour, B., & Jin, X. (2019). Unexpectedly high oil cleanup capacity of electrospun poly(vinylidene fluoride) fiber webs induced by spindle porous bowl-like beads. Soft Materials, 17(4), 410–417. https://doi.org/10.1080/1539445X.2019.1614060
- Zhu, W., Zhu, J. Y., Gleisner, R., & Pan, X. J. (2010). On energy consumption for size-reduction and yields from subsequent enzymatic saccharification of pretreated lodgepole pine. Bioresource Technology, 101(8), 2782–2792. https://doi.org/10.1016/j.biortech.2009.10.076
- Zhu, Y., He, C., Fan, H., Lu, Z., Lu, F., & Zhao, H. (2019). Modification of foxtail millet (Setaria italica) bran dietary fiber by xylanase-catalyzed hydrolysis improves its cholesterol-binding capacity. LWT, 101, 463–468. https://doi.org/10.1016/J.LWT.2018.11.052
- Zhuang, X., Yang, X., Shi, L., Cheng, B., Guan, K., & Kang, W. (2012). Solution blowing of submicron-scale cellulose fibers. Carbohydrate Polymers, 90(2), 982–987. https://doi.org/10.1016/j.carbpol.2012.06.031
- Zimmermann, T., Pöhler, E., & Geiger, T. (2004). Cellulose fibrils for polymer reinforcement. Advanced Engineering Materials, 6(9), 754–761. https://doi.org/10.1002/adem.200400097
- Zhang, M., Liang, Y., Pei, Y., Gao, W., & Zhang, Z. (2009). Effect of process on physicochemical properties of Oat Bran Soluble Dietary Fiber, Journal of Food Science, 74(8), 176–188. https://doi.org/10.1111/j.1750-3841.2009.01324.x